

Television State Tel

Руководство пользователя

Политерм

Содержание

1. Введение	. 1
1.1. Назначение документа	1
1.2. Общие сведения о программе	. 1
1.2.1. Описание основных характеристик и особенностей	. 1
1.2.2. Взаимодействие с другими программами	. 2
1.2.3. Сведения о технических средствах и операционных системах	3
1.3. Возможности программы	. 4
1.3.1. Наладочный расчет	4
1.3.2. Поверочный расчет	5
1.3.3. Конструкторский расчет	5
1.3.4. Расчет температурного графика	6
1.3.5. Пьезометрический график	. 6
1.3.6. Расчет належности	. 8
137 Коммутационные залачи	8
1.3.8. Расчет нормативных потерь тепла через изолящию	
2. Элементы молели тепловой сети	10
2. Олементы модели тепловой сети	10
2.1. Введение	10
2.2. Источник	13
2.3. 5 часток	14
2.3.1. Пачало и консц участка	1/
2.5.2. Паправление	14
2.4. Погребитель	15
2.4.1. Потреоитель	15
2.4.2. Обоощенный потребитель	10
2.5. y 3en	17
2.5.1. Простои узел	1/
2.6. Центральный тепловой пункт (Ц111)	18
2.7. Насосная станция	20
2.8. Задвижка	23
2.8.1. Слив через задвижку	25
2.9. Перемычка	26
2.10. Дросселирующие устройства	27
2.10.1. Дроссельная шайба	27
2.10.2. Регулятор располагаемого напора	28
2.10.3. Регулятор давления	29
2.10.4. Регулятор расхода	30
2.10.5. Локальное сопротивление	31
2.11. Вспомогательный участок	32
2.11.1. Вспомогательный участок для ЦТП	32
2.11.2. Указатель узла измерения регулятора	32
3. Моделирование тепловой сети	34
3.1. Введение	34
3.2. Изображение тепловой сети на карте	34
3.2.1. Схематическое изображение тепловой сети	35
3.2.2. Упрощенное и детальное изображение сети	36
3.3. Последовательность действий	36
3.4. Создание слоя тепловой сети	37
3.4.1. Файлы слоя тепловых сетей	40
3.5. Загрузка слоя в карту	41
4. Структура слоя	43

4.1. Общие сведения о структуре сдоя	43
	45
	49
4.7. Turli of ertop	50
4.2.1 Полиционениев и типу база денних	52
4.2.1. Подключенная к типу база данных	52
4.2.2. Cosdahue hoboro funa obsektos	52 54
4.2.5. 9 dahemme fulla	54
4.2.4. Гедактирование параметров уже существующего типа	55
4.5. ГЕЖИМЫ ООБЕКТОВ	55
4.5.1. Создание нового режима объекта	50
4.5.2. Изменение размеров символов тепловой сети	01
4.5.5. Изменение внешнего вида символов тепловой сети	01
4.5.4. Удаление режима	03
4.3.5. ИМПОРТ ТИПОВ И РЕЖИМОВ	63
4.3.6. Пример создания режима для уже существующего типа	64
«Узел»	64
4.4. Печать объектов, входящих в структуру слоя	66
5. Ввод объектов сети	67
5.1. Включение режима редактирования слоя	67
5.2. Последовательность действий при вводе	68
5.2.1. Ввод узловых объектов сети	69
5.2.2. Ввод тепловой сети с помощью участка	71
6. Редактирование сети	75
6.1. Редактирование одиночных объектов	75
6.1.1. Перемещение объекта	75
6.1.2. Поворот символьного объекта	77
6.1.3. Дублирование одиночного объекта	77
6.1.4. Смена типа или режима объекта	78
6.1.5. Смена направления участка тепловой сети	79
6.1.6. Удаление объекта	79
6.2. Редактирование элементов объекта	80
6.2.1. Перемещение узла	80
6.2.2. Перемещение отрезка	81
6.2.3. Добавление точки перелома	81
6.2.4. Удаление точки перелома	82
6.2.5. Перепривязка участка	83
6.2.6. Разбиение участка на лва узловым объектом (Ввол объекта на	
существующую сеть)	84
6.2.7. Объелинение последовательно соединенных участков (Удале-	0.
ние объекта с нанесенной сети)	84
63 Контроль ошибок при вволе	85
7 Исходные данные для выполнения инженерных расчетов	87
7.1 Вреление	87
7.2 Основные исхолные данные для выполнения надалонного и поверон-	07
	88
7.2.1. Источник	88
7.2.2. Пото ник	Q1
7.2.2. Потреоннов	90
7.2.4. Обобщениций потребители	90 104
7.2.5. Занориад арматира	104
7.2.6. Умаетак тандарай асти	103
7.2.7. Цалания стрини сети	100
/.2./. насосная станция	109

7.2.8. Вычисляемая дроссельная шайба	110
7.2.9. Устанавливаемая дроссельная шайба	111
7.2.10. Регулятор давления	112
7.2.11. Регулятор располагаемого напора	112
7.2.12. Регулятор расхода	112
7.2.13. Локальное сопротивление	113
7.3. Дополнительные исходные данные для расчета с учетом тепловых по-	
терь	113
7.3.1. Расчет по нормированным потерям	114
7.3.2. Расчет тепловых потерь с учетом фактической изоляции	115
7.4. Исходные данные для выполнения конструкторского расчета	117
7.4.1. По потребителям	117
7.4.2. По участкам	118
7.5. Исходные данные для построения температурного графика	119
7.6. Исходные данные для расчета нормативных потерь тепла за год	120
8. Испытательные параметры теплообменного аппарата	122
8.1. Схемы с параллельным подключением теплообменника на ГВС	123
9. Настройки расчетов и вкладка Сервис	125
9.1. Настройка расчета тепловых потерь	126
9.2. Настройка расчета потерь напора	127
9.3. Выбор и настройка параметров теплоносителя	128
9.4. Настройка расчета утечек	129
9.5. Настройка протоколирования расчета	130
9.6. Настройка раскраски	132
9.7. Настройка расчета ГВС	132
9.7.1. Задание способа вычисления циркуляционного расхода воды на	
ГВС	134
9.8. Настройка использования исходных данных	135
9.9. Настройка расчета надежности	136
9.10. Настройка HASP	136
9.11. Настройка используемых единиц измерения	137
9.12. Вкладка Сервис	138
10. Наладочный расчет	140
10.1. Цель расчета	140
10.2. Знакомство с панелью расчетов	140
10.3. Запуск расчета	141
10.4. Результаты наладочного расчета	143
10.4.1. По всем объектам	144
10.4.2. По источнику	145
10.4.3. По потребителям	146
10.4.4. По участкам	149
10.4.5. По дросселирующим устройствам	150
10.4.6. По ЦПП	150
11. Поверочный расчет	154
11.1. Цель расчета	154
11.2. Знакомство с панелью расчетов	154
11.3. Запуск расчета	155
11.4. Расчет при нехватке установленной мощности на источнике	158
12. Конструкторский расчет	160
12.1. Цель расчета	160
12.2. Знакомство с панелью расчетов	160
12.3. Запуск расчета	161

12.3.1. Последовательность выполнения расчета	163
12.4. Пример конструкторского расчета	164
13. Расчет температурного графика	168
13.1. Цель расчета	168
13.2. Знакомство с панелью расчетов	168
13.3. Запуск расчета	169
13.4. Просмотр результатов расчета	171
13.5. Сохранение результатов расчета температурного графика	172
14. Расчет годовых нормируемых потерь через тепловую изоляцию	174
14.1. Цель расчета	174
14.2. Знакомство с панелью расчетов	174
14.3. Запуск расчета	175
14.4. Экспорт в EXCEL	178
15. Расчет надежности	179
15.1. Цель расчета	179
15.2. Запуск расчета	179
15.3. Исходные данные	181
15.3.1. Добавление полей в базы данных	182
15.3.2. Участок	183
15.3.3. Обобщенный потребитель	184
15.3.4. Задвижка	184
15.3.5. Потребитель	185
15.4. Результаты расчета	185
15.4.1. По участкам тепловой сети	185
15.4.2. По задвижкам	186
15.4.3. По потребителям и обобщенным потребителям	186
16. Коммутационные задачи	187
16.1. Цель расчета	187
16.2. Знакомство с окном Коммутационные задачи	187
16.3. Запуск расчета	188
16.3.1. Анализ переключений	189
16.3.2. Поиск в слое-подложке	192
16.4. Настройки	193
16.5. Работа со списком объектов	198
16.6. Просмотр результатов расчета	199
16.6.1. Навигация	199
16.6.2. Печать отчета	200
16.6.3. Экспорт в MS Excel	200
16.6.4. Экспорт в HTML	201
17. Пьезометрический график	203
17.1. Знакомство с окном пьезографика	203
17.2. Построение пьезометрического графика	204
17.2.1. Панель инструментов пьезометрического графика	206
17.3. Сохранение пьезометрического графика	206
17.4. Сохранение пьезометрического графика в Ms Word и Excel	207
17.5. Экспорт пьезометрического графика	209
17.6. Совмещение пьезометрических графиков	209
17.7. Быстрая настройка пьезометрического графика	210
17.8. Создание нового шаблона пьезометрического графика	212
17.8.1. Раздел График	213
17.8.2. Раздел Кривые	216
	221

17.9. Настройка HASP	224
18. Возможные ошибки расчетов	226
18.1. Ошибки по топологии сети	226
18.2. Ошибки по семантической информации	227
18.3. Ошибки по результатам расчета	228
18.4. Остальные ошибки	232
19. Автоматическое занесение исходных данных	233
19.1. Автоматическое занесение длины с карты	233
19.2. Автоматическое занесение начала и конца участков	234
19.3. Автоматическое занесение геодезических отметок объектов сети со	
слоя рельефа	236
20. Справочники	238
20.1. Справочник по трубам	238
20.1.1. Открытие справочника по трубам	239
20.1.2. Выбор материала трубопровода	241
20.1.3. Добавление нового диаметра к существующему материалу	242
20.1.4. Удаление диаметра	243
20.1.5. Добавление нового материала в справочник	243
20.1.6. Удаление материала из справочника	243
20.2. Справочник по насосам	243
20.2.1. Открытие справочника по насосам	245
20.2.2. Выбор марки насоса из справочника	246
20.2.3. Добавление марки в справочник	247
20.2.4. Импорт данных по насосам	248
20.2.5. Экспорт данных по насосам	248
20.2.6. Удаление насоса	249
20.3. Справочник по запорной арматуре	249
20.3.1. Открытие справочника по запорной арматуре	251
20.3.2. Выбор марки запорной арматуры из справочника	252
20.3.3. Добавление марки в справочник	253
20.3.4. Импорт данных по запорным устройствам	254
20.3.5. Экспорт данных по запорным устройствам	254
20.3.6. Удаление запорного устройства из справочника	254
20.4. Справочник по теплоносителям	255
20.4.1. Открытие справочника	255
20.4.2. Добавление нового теплоносителя в справочник	256
20.4.3. Редактирование существующего теплоносителя	257
20.4.4. Удаление теплоносителя из справочника	257
20.4.5. Переименование теплоносителя	257
20.5. Справочник по местным сопротивлениям	258
20.5.1. Открытие справочника по местным сопротивлениям	258
20.5.2. Занесение местных сопротивлений	259
20.6. Справочник по коэффициентам часовой неравномерности	261
20.6.1. Открытие справочника часовой неравномерности	261
20.6.2. Добавление зависимости в справочник	263
20.7. Справочник по теплопроводности изоляции	264
20.7.1. Открытие справочника по изоляции	265
20.7.2. Добавление изоляции в справочник	267
20.7.3. Редактирование справочника по изоляции	267
21. Подбор оборудования Danfoss	269
21.1. Подбор шаровых кранов фирмы Danfoss	269
21.1.1. Открытие окна подбора	270

21.1.2. Добавление полей в базу данных	270
21.1.3. Занесение исходных данных	271
21.1.4. Подбор ШК	272
21.1.5. Очистка полей по ШК	273
21.1.6. Открытие справочника ШК Danfoss	274
21.1.7. Пример подбора шаровых кранов Danfoss	275
21.1.8. Справочная информация по полям ШК Danfoss	278
21.2. Подбор регуляторов прямого действия фирмы Danfoss	279
21.2.1. Открытие окна подбора	280
21.2.2. Добавление полей в базу данных	280
21.2.3. Настройка исходных данных для подбора	281
21.2.4. Подбор регуляторов давления	282
21.2.5. Очистка полей по регуляторам	283
21.2.6. Пример подбора регуляторов Danfoss	284
21.2.7. Справочная информация по полям регуляторов Danfoss	286
22. Отображение семантической информации на карте	289
23. Тематическая раскраска	291
23.1. Раскраска с помощью встроенных фильтров	292
23.1.1. Запуск раскраски	292
23.1.2. Настройки раскраски	293
23.2. Раскраска с помощью собственного фильтра	294
23.2.1. Создание нового тематического файла	294
23.2.2. Редактирование тематического файла	296
23.2.3. Подключение тематической окраски	297
23.2.4. Обновление тематической окраски	297
23.2.5. Пример создания тематического фильтра	298
24. Таблицы баз данных элементов тепловой сети	301
24.1. Источник тепловой сети	301
24.2. Узел тепловой сети	309
24.3. Потребитель	310
24.4. Насосная станиия	326
24.5. Запорная арматура	329
24.6. Участок тепловой сети	334
24.7. Лросселирующий узел	345
24.8. Пентральный тепловой пункт	350
24.9. Перемычка	364
2410 Обобщенный потребитель	365
25 Dopmyrta	370
25.1 Ввеление	370
25.2. Опредение расчетных расходов теплоносителя	370
25.3. Cropocth notenu hanona connoturneur	373
25.5. Скороств, потери напора, сопротивления	376
25.5. Поверонный распет теплообменных аппаратов	378
25.5. Поверочный расчет теплообменных анпаратов	380
	381
25.7.1 истот пормативных утстек	381
25.7.1. у течки из систем теплопотреоления	201
23.1.2. у течки на участках тепловой сети	302 381
20. Обновления по и пастроика защиты паст	384
26.1. Обновление справочной системы	381
20.2. После установки обновления	385
20.5. Haciponka saightibi HASI	387
	501

А. Схемы подключения	388
А.1. Расчетные схемы присоединения потребителей	388
А.1.1. Схема № 1	389
А.1.2. Схема № 2	389
А.1.3. Схема № 3	389
А.1.4. Схема № 4	390
А.1.5. Схема № 5	390
А.1.6. Схема № 6	390
А.1.7. Схема № 7	390
А.1.8. Схема № 8	391
А.1.9. Схема № 9	391
А.1.10. Схема № 10	391
А.1.11. Схема № 11	392
А.1.12. Схема № 12	392
А.1.13. Схема № 13	392
А.1.14. Схема № 14	393
А.1.15. Схема № 15	393
А.1.16. Схема № 16	393
А.1.17. Схема № 17	394
А.1.18. Схема № 18	394
А.1.19. Схема № 19	394
А.1.20. Схема № 20	395
А.1.21. Схема № 21	395
А.1.22. Схема № 22	395
А.1.23. Схема № 23	396
А.1.24. Схема № 24	396
А.1.25. Схема № 25	396
А.1.26. Схема № 26	397
А.1.27. Схема № 27	397
А.1.28. Схема № 28	397
А.1.29. Схема № 29	397
А.1.30. Схема № 30	398
А.1.31. Схема № 31	398
А.1.32. Схема № 32	398
А.1.33. Схема № 33	399
А.1.34. Схема № 34	399
А.1.35. Схема № 35	399
А.2. Расчетные схемы присоединения ЦТП	400
А.2.1. Схема № 1	400
А.2.2. Схема № 2	400
А.2.3. Схема № 3	400
А.2.4. Схема № 4	401
А.2.5. Схема № 5	401
А.2.6. Схема № 6	401
А.2.7. Схема № 7	402
А.2.8. Схема № 8	402
А.2.9. Схема № 9	402
А.2.10. Схема № 10	403
А.2.11. Схема № 11	403
А.2.12. Схема №12	403
А.2.13. Схема № 13	404
А.2.14. Схема № 14	404

А.2.15. Схема № 15	404
А.2.16. Схема № 16	405
А.2.17. Схема № 17	405
А.2.18. Схема № 18	405
А.2.19. Схема № 19	406
А.2.20. Схема № 20	406
А.2.21. Схема № 21	406
А.2.22. Схема № 22	407
А.2.23. Схема № 23	407
А.2.24. Схема № 24	407
А.2.25. Схема № 25	408
А.2.26. Схема № 26	408
А.2.27. Схема № 27	408
А.2.28. Схема № 28	408
А.2.29. Схема № 29	409
В. Нормы тепловых потерь	410
В.1. 1959 года- Нормы проектирования тепловой изоляции для трубопро-	
водов и оборудования электростанций и тепловых сетей. М.: Госстройиз-	
дат, 1959	410
В.2. 1988 года- СНиП 2.04.14-88* Тепловая изоляция оборудования и тру-	
бопроводов	412
В.3. 1997 года- Изменения внесенные в СНиП 2.04.14-88* постановлением	
Госстроя России от 29.12.97 г. № 18-80	422
В.4. 2003 года- СНиП 41-03-2003 Тепловая изоляция оборудования и тру-	
бопроводов	430
В.5. КТМ 204 Украины 244-94	438
С. Технические характеристики стальных трубопроводов для тепловой сети	448
D. Основные типы сборных железобетонных каналов для тепловой сети	450
Е. Коэффициенты местных сопротивлений на участке трубопровода	452
F. Коэффициенты теплопроводности изоляции	454

Глава 1. Введение

1.1. Назначение документа

Данное руководство предназначено для инженерно-технического персонала, выполняющего тепло-гидравлические расчеты систем теплоснабжения на программе ZuluThermo. При работе с программой не требуются глубокие знания по программированию, достаточно четко и грамотно сформулировать свои цели и с помощью, имеющихся в ZuluThermo инструментов решить поставленные задачи.

В руководстве подробно описываются основные функции ZuluThermo, а также основные расчетные зависимости. Настоящий документ дает возможность самостоятельно изучить и правильно использовать разнообразные функции при решении инженерных задач. В конце многих разделов приведены практические примеры, которые позволяют быстрее освоить и запомнить разнообразные функции.

В связи с постоянным усовершенствованием ZuluThermo данное описание может быть неполным или в отдельных пунктах расходиться с тем, что пользователь видит на экране. В этом случае рекомендуется просматривать справку по выбранной команде непосредственно в программе, нажав кнопку Справка (?) или на сайте <u>http://www.politerm.com.ru/</u>. Успехов в обучении и работе.

1.2. Общие сведения о программе

Наименование и обозначение программы – ZuluThermo.

Средством разработки ZuluThermo является Microsoft Visual C++.

Программа ZuluThermo предназначена для выполнения инженерных расчетов системы централизованного теплоснабжения.

1.2.1. Описание основных характеристик и особенностей

Система обладает широкими возможностями:

- Проводить технологические расчеты инженерных коммуникаций;
- создавать и использовать библиотеку графических образов элементов систем теплоснабжения и режимов их функционирования;
- создавать расчетные схемы инженерных коммуникаций с автоматическим формированием топологии сети и соответствующих баз данных;
- создавать входные и выходные формы представления информации;
- изменять топологию сетей и режимы работы ее элементов; решать различные топологические задачи.

Ограничение области применения

- Только для расчета наружных тепловых сетей;
- ограничивается заданными схемами присоединения потребителей и центральных тепловых пунктов;
- ограничивается стандартным набором элементов системы централизованного теплоснабжения;
- ограничивается расчетом стационарных режимов работы системы.

1.2.2. Взаимодействие с другими программами

Объектная модель Zulu открыта для расширения приложениями пользователя через механизм COM. Zulu предоставляет возможность использовать и расширять свою функциональность двумя способами- это написание модулей расширения системы (plug-ins) или использование ActiveX компонентов в своих готовых приложениях.

1.2.2.1. Создание модулей расширения системы(plugins)

Zulu имеет открытую архитектуру, система спланирована для расширения как программами ООО «Политерм », так и программами пользователей. Архитектура plug-ins (плагинов- дополнительных встраиваемых модулей) позволяет использовать Zulu как ГИС-платформу (или ГИС-среду) для работы других приложений.

ZuluNetTools- библиотека ActiveX компонентов. Предоставляет возможность разработчикам программного обеспечения включать в свои приложения гидравлические расчеты тепловых, водопроводных, паровых и газовых сетей, реализованные в расчетных модулях ZuluThermo, ZuluHydro, ZuluSteam и ZuluGaz, в средах разработки приложений, поддерживающих модель COM (Microsoft Visual C++, Microsoft Visual Basic, Borland Delphi, Borland C++ builder и т.д.)

Основные возможности

- программное задание топологической модели инженерной сети
- программное задание исходных данных для расчетов
- подключение инженерных сетей в формате ГИС Zulu
- запуск расчетов
- программное чтение результатов расчетов и кодов ошибок
- вывод протокола расчетов и списка ошибок
- построение пьезографиков

Более подробная информация доступна на сайте разработчиков <u>ZuluNetTools</u> [http:// politerm.com.ru/zulunettools/index.htm]

1.2.2.2. Экспорт и импорт

ZuluThermo на основе ГИС позволяет экспортировать информацию в следующие обменные форматы:

- DXF;
- MIF/MID;
- BMP;
- Shape SHP;
- Microsoft Excel (xls);
- Html.

А также импортировать информацию из форматов:

- DXF;
- MIF/MID;
- Shape SHP;
- Metafile WMF.

1.2.3. Сведения о технических средствах и операционных системах

Геоинформационная система Zulu и программа ZuluThermo работают в операционных системах Microsoft: Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, Windows 8, Windows 10.

Минимальные требования для ГИС Zulu:

- Процессор класса Pentium 350МГц;
- Видеоадаптер Super VGA (800 x 600);
- Объем памяти ОЗУ 256Мб;
- 150Мб свободного места на жестком диске;
- Microsoft Windows XP.

Рекомендуемые требования для ГИС Zulu:

- Процессор класса Pentium 2.0ГГц и выше;
- Видеоадаптер Super VGA (1280 x 1024), TrueColor (16,7 млн. цветов);
- Объем памяти ОЗУ 2Гб;
- 150Мб свободного места на жестком диске;
- Microsoft Windows XP, Windows Vista, Windows 7 или Windows 8.

1.3. Возможности программы

Основой ZuluThermo является географическая информационная система (ГИС) Zulu. При помощи ГИС можно создать карту города (населенного пункта) и нанести на неё тепловые сети. ZuluThermo позволяет рассчитывать системы централизованного теплоснабжения большого объема и любой сложности.

Расчету подлежат *тупиковые* и *кольцевые* сети (количество колец в сети неограниченно), а также двух, трех, четырехтрубные или многотрубные системы теплоснабжения, в том числе с повысительными насосными станциями и дросселирующими устройствами, работающие от одного или нескольких источников.

Программа предусматривает выполнение теплогидравлического расчета системы централизованного теплоснабжения с потребителями, подключенными к тепловой сети по различным схемам. Используются 35 схемных решения подключения потребителей, а также 29 схем присоединения ЦТП. Вышеприведенные схемы подключения потребителей подробно рассматриваются в соответствующих разделах: <u>Раздел А.1, «Расчетные схемы присоединения потребителей»</u> и раздел <u>Раздел А.2, «Расчетные схемы присоединения ЦТП»</u>

Расчет систем теплоснабжения может производиться с учетом утечек из тепловой сети и систем теплопотребления, а также тепловых потерь в трубопроводах тепловой сети. Расчет тепловых потерь ведется либо по нормативным потерям, либо по фактическому состоянию изоляции.

Результаты расчетов могут быть экспортированы в MS Excel, наглядно представлены с помощью тематической раскраски и пьезометрических графиков. Картографический материал и схема тепловых сетей может быть оформлена в виде документа с использованием макета печати.

Состав расчетов

- Раздел 1.3.1, «Наладочный расчет»
- <u>Раздел 1.3.2, «Поверочный расчет»</u>
- Раздел 1.3.3, «Конструкторский расчет»
- <u>Раздел 1.3.4</u>, «Расчет температурного графика»
- Раздел 1.3.5, «Пьезометрический график»
- Раздел 1.3.6, «Расчет надежности»
- Раздел 1.3.7, «Коммутационные задачи»
- <u>Раздел 1.3.8, «Расчет нормативных потерь тепла через изоляцию»</u>

1.3.1. Наладочный расчет

Целью наладочного расчета является качественное обеспечение всех потребителей, подключенных к тепловой сети необходимым количеством тепловой энергии и сетевой воды, при оптимальном режиме работы системы централизованного теплоснабжения в целом.

В результате наладочного расчета определяются номера элеваторов, диаметры сопел и дросселирующих устройств, а также места их установки.

Расчет проводится с учетом различных схем присоединения потребителей к тепловой сети и степени автоматизации подключенных тепловых нагрузок. При этом на потребителях могут устанавливаться регуляторы расхода, нагрузки и температуры. На тепловой сети могут быть установлены насосные станции, регуляторы давления, регуляторы расхода, кустовые шайбы и перемычки.

1.3.2. Поверочный расчет

Целью поверочного расчета является определение фактических расходов теплоносителя на участках тепловой сети и у потребителей, а также количестве тепловой энергии получаемой потребителем при заданной температуре воды в подающем трубопроводе и располагаемом напоре на источнике.

Созданная математическая имитационная модель системы теплоснабжения, служащая для решения поверочной задачи, позволяет анализировать гидравлический и тепловой режим работы, а также прогнозировать изменение температуры внутреннего воздуха у потребителей. Расчеты могут проводиться при различных исходных данных, в том числе аварийных ситуациях, например, отключении отдельных участков тепловой сети, передачи воды и тепловой энергии от одного источника к другому по одному из трубопроводов и т.д. В качестве теплоносителя может использоваться вода, антифриз или этиленгликоль.

Расчёт тепловых сетей можно проводить с учётом:

- утечек из тепловой сети и систем теплопотребления;
- тепловых потерь в трубопроводах тепловой сети;
- фактически установленного оборудования на абонентских вводах и тепловых сетях.

Поверочный расчет позволяет рассчитать любую аварию на трубопроводах тепловой сети и источнике теплоснабжения. В результате расчета определяются расходы и потери напора в трубопроводах, напоры в узлах сети, в том числе располагаемые напоры у потребителей, температура теплоносителя в узлах сети (при учете тепловых потерь), температуры внутреннего воздуха у потребителей, расходы и температуры воды на входе и выходе в каждую систему теплопотребления. При работе нескольких источников на одну сеть определяется распределение воды и тепловой энергии между источниками. Подводится баланс по воде и отпущенной тепловой энергией между источником и потребителями. Определяются зоны влияния источников на сеть.

1.3.3. Конструкторский расчет

Целью конструкторского расчета является определение диаметров трубопроводов тупиковой и кольцевой тепловой сети при пропуске по ним расчетных расходов при заданном (или неизвестном) располагаемом напоре на источнике.

Данная задача может быть использована при:

- Проектировании новых тепловых сетей;
- При реконструкции существующих тепловых сетей;

• При выдаче разрешений на подключение новых потребителей к существующей тепловой сети.

В качестве источника теплоснабжения может выступать любой узел системы, например тепловая камера.

Для более гибкого решения данной задачи предусмотрена возможность задания для каждого участка тепловой сети либо оптимальной скорости движения воды, либо удельных линейных потерь напора.

В результате расчета определяются диаметры трубопроводов, располагаемый напор в точке подключения, расходы, потери напора и скорости движения воды на участках сети.

1.3.4. Расчет температурного графика

Целью расчета является определение минимально необходимой температуры теплоносителя на выходе из источника для обеспечения у выбранного потребителя температуры внутреннего воздуха не ниже расчетной. Температурный график строится для отопительного периода с интервалом в 1 °C, <u>Рисунок 1.1, «Пример температурного</u> <u>графика»</u>.

Предусмотрена возможность задания температуры срезки графика и компенсации недоотпуска тепловой энергии в этот период времени за счет увеличения расхода сетевой воды от источника.

Рисунок 1.1. Пример температурного графика

1.3.5. Пьезометрический график

Целью построения пьезометрического графика <u>Рисунок 1.2, «Пример пьезометрического графика»</u> является наглядная иллюстрация результатов гидравлического расчета (наладочного, поверочного, конструкторского). Настройка графика задается пользователем, при этом на экран может выводиться:

- Линия давления в подающем трубопроводе;
- линия давления в обратном трубопроводе;

- линия поверхности земли;
- линия потерь напора на шайбе;
- высота здания;
- линия вскипания;
- линия статического напора.

Рисунок 1.2. Пример пьезометрического графика

В таблице под графиком выводятся для каждого узла сети наименование, геодезическая отметка, высота потребителя, напоры в подающем и обратном трубопроводах, величина дросселируемого напора на шайбах у потребителей, потери напора по участкам тепловой сети, скорости движения воды на участках тепловой сети и т.д. Количество выводимой под графиком информации настраивается пользователем.

Также график может отображать падение температуры в тепловой сети, после проведения расчетов с учетом тепловых потерь. <u>Рисунок 1.3, «График падения температу-</u> <u>ры»</u>

Рисунок 1.3. График падения температуры

При этом на график выводятся значения температур в узловых точках по подающему и обратному трубопроводам. Количество выводимой под графиком информации настраивается пользователем.

1.3.6. Расчет надежности

Целью расчета является оценка способности действующих и проектируемых тепловых сетей надежно обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения каждого потребителя, а так-же обоснование необходимости и проверки эффективности реализации мероприятий, повышающих надежность теплоснабжения потребителей тепловой энергии.

Оценка надежности тепловых сетей осуществляется по результатам сравнения расчетных значений показателей надежности с нормированными значениями этих показателей в соответствии с положениями п. 6.28 СНиП 41-02-2003.

Обоснование необходимости реализации мероприятий, повышающих надежность теплоснабжения потребителей тепловой энергии, осуществляется по результатам качественного анализа полученных численных значений.

Проверка эффективности реализации мероприятий, повышающих надежность теплоснабжения потребителей, осуществляется путем сравнения исходных (полученных до реализации) значений показателей надежности, с расчетными значениями, полученными после реализации (моделирования реализации) этих мероприятий.

1.3.7. Коммутационные задачи

Коммутационные задачи предназначены для анализа изменений вследствие отключения задвижек или участков сети. В результате выполнения коммутационной задачи определяются объекты, попавшие под отключение. При этом производится расчет объемов воды, которые возможно придется сливать из трубопроводов тепловой сети и систем теплопотребления. Результаты расчета отображаются на карте в виде тематической раскраски отключенных участков и потребителей и выводятся в отчет. Подробно с описанием задач можно ознакомиться в разделе <u>Глава 16</u>, *Коммутационные задачи*.

1.3.8. Расчет нормативных потерь тепла через изоляцию

Целью данного расчета является определение нормативных тепловых потерь через изоляцию трубопроводов в течение года. Тепловые потери определяются суммарно за год с разбивкой по каждому месяцу с учетом работы трубопроводов тепловой сети в различные периоды (летний, зимний). Расчет может быть выполнен с учетом поправочных коэффициентов на нормы тепловых потерь.

Просмотреть результаты расчета можно как суммарно по всей тепловой сети, так и по каждому отдельно взятому источнику тепловой энергии и каждому центральному тепловому пункту (ЦТП), а также по различным владельцам (балансодержателям) участ-ков тепловой сети. <u>Рисунок 1.4, «Пример расчета годовых потерь тепла»</u>

Также результаты выполненных расчетов можно посмотреть экспортировать в MS Excel. Подробно с описанием задачи можно ознакомиться в разделе <u>Раздел 14.3, «За-пуск расчета»</u>

									AAA							
🖃 - Тепло	вая	сеть			Графи	ик			Cp	еднегодов	sie		Расчет	потерь	Сохранить	
Kc	тел	ьная N	≗ 1		Тнв	-30.0)	Tco 95.0	Γ T	нв -5.5	Тгрунт	1.0			conpanint	
	- ЦТ	ГП - 1			Tree	Тара 150.0 Тев 20.0 Тара 62.0 Тарар 10.0							UTYET			
	- ЦТ	ГП - 1 (I	FBC)									🖲 Суммарные по подсети				
ЩТП - 2 ЦТП - 2 (ГВС)					Тобр //0.0 Тобр 49.0								🔘 По данному узлу			
					🗸 Поп	равочн	ый коз	Владельцы: (Все владельцы)								
					🗹 Русс	ские за	аголовн									
Месяц	П.,	Про	Тнв	Тгр	Тпод	Тобр	Тхв	Опод Гкал	і Ообр Гкал	Gvr под 1	Очт под	. Gvr обрт	Очтобр	. Gvr потт	Qvrnor	
Январь	0	744	-11.0	1.0	104.5	54.9	5.0	432.9	185.5	264.4	22.7	270.2	13.6	198.7	11.6	
	Л	0	-11.0	1.0	60.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Февраль	0	672	-30.0	0.0	150.0	70.0	0.0	499.9	214.3	232.1	28.3	242.4	16.1	179.4	12.8	
	Л	0	-30.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Март	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Апрель	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Май	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Июнь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Июль	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Август	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Сентябрь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Октябрь	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ноябрь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Декабрь	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Μ τορο:								4621.2	1980.5	3141.4	233.0	3190.4	150.2	2339.2	124.3	

Рисунок 1.4. Пример расчета годовых потерь тепла

Глава 2. Элементы модели тепловой сети

2.1. Введение

Данный раздел посвящен описанию объектов, необходимых для построения математической модели тепловой сети.

Математическая модель представляет собой связанный граф, где узлами являются объекты, а дугами графа – участки тепловой сети. Каждый объект математической модели относится к определенному типу, характеризующему данную инженерную сеть, и имеет режимы работы, соответствующие его функциональному назначению. Тепловая сеть включает в себя следующие основные объекты: источник, участок, потребитель и узлы: центральный тепловой пункт (ЦТП), насосную станцию, запорно-регулирующую арматуру, и другие элементы. Несмотря на то, что на участке может быть и подающий и обратный трубопровод, пользователь изображает участок сети в одну линию. Это внешнее представление сети. Перед началом расчета внешнее представление сети, в зависимости от типов и режимов элементов, составляющих сеть, преобразуется (кодируется) во внутреннее представление, по которому и проводится расчет.

Далее подробно описан каждый элемент математической модели тепловой сети: основные функции, изображение на схеме, внешнее и внутреннее представление, особенности изображения (например при изображении пиковой котельной).

2.2. Источник

Источник – это символьный объект тепловой сети, моделирующий режим работы котельной или ТЭЦ. В математической модели источник представляется сетевым насосом, создающим располагаемый напор, и подпиточным насосом, определяющим напор в обратном трубопроводе. Внешнее и внутреннее представление источника показано на <u>Рисунок 2.1, «Слева однолинейное изображение сети, справа – внутреннее</u> представление».

Условное обозначение источника в зависимости от режима работы:

Рисунок 2.1. Слева однолинейное изображение сети, справа – внутреннее представление

В случае, когда на одну тепловую сеть работает несколько источников, внешнее и внутреннее представление будет иметь вид, показанный на <u>Рисунок 2.2, «Сверху: од-</u>нолинейное изображение сети, снизу – внутренне представление».

Рисунок 2.2. Сверху: однолинейное изображение сети, снизу – внутренне представление

При работе нескольких источников на сеть один из них может выступать в качестве пиковой котельной, в этом случае внешнее и внутреннее представление показано на <u>Рисунок 2.3, «Сверху: однолинейное изображение сети, снизу – внутренне представление</u> <u>ление</u>»

Рисунок 2.3. Сверху: однолинейное изображение сети, снизу – внутренне представление

Если в сети один источник, то он поддерживает заданное давление в обратном трубопроводе на входе в источник, заданный располагаемый напор на выходе из источника и заданную температуру теплоносителя. Разница между суммарным расходом в подающих трубопроводах и суммарным расходом в обратных трубопроводах на источнике определяет величину подпитки. Она же равна сумме всех утечек теплоносителя из сети (заданные отборы из узлов, утечки, расход на открытую систему ГВС).

Если на одну сеть работает несколько источников, то в общем случае только на одном из источников с подпиткой можно одновременно поддерживать и давление в обратном трубопроводе и располагаемый напор на выходе. У остальных источников с подпиткой можно поддерживать только давление в обратном трубопроводе. При работе нескольких источников на одну сеть некоторые источники могут не иметь подпитки. На таких источниках давление в обратном трубопроводе не фиксируется и поддерживаться может только располагаемый напор.

Следует отметить, что при работе нескольких источников не при любых исходных данных может существовать решение. Один источник может задавить другой, заданные давления и напоры могут оказаться недостижимы. Это зависит от величины подпитки, от конфигурации сети, от сопротивлений трубопроводов и т.д. В каждом конкретном случае это может показать только расчет.

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как источник. Уникальный номер (ID) в структуре слоя тепловой сети – ID 1.

2.3. Участок

Участок- это линейный объект, на котором не меняются:

- Диаметр трубопровода;
- Тип прокладки;
- Вид изоляции;
- Расход теплоносителя.

Двухтрубная тепловая сеть изображается в одну линию и может, в зависимости от желания пользователя, соответствовать или не соответствовать стандартному изображению сети по ГОСТ 21-605-82.

Как любой объект сети, участок имеет разные режимы работы, например, «отключен подающий» или «отключен обратный», см. <u>Рисунок 2.4, «Режимы изображения участ-ка»</u>. Эти режимы позволяют смоделировать многотрубные схемы тепловых сетей.

Рисунок 2.4. Режимы изображения участка

На <u>Рисунок 2.5, «Пример однолинейного и внутреннего представления»</u> изображена цепочка из участков в однолинейном изображении имеющих разные режимы работы. Ниже, соответствующее ей внутреннее двухлинейное представление этой сети.

Рисунок 2.5. Пример однолинейного и внутреннего представления

На <u>Рисунок 2.6, «Изображение трехтрубной и четырехтрубной сети»</u> показано, как можно изобразить трехтрубную сеть, с двумя подающими и одним обратным трубопроводом, а также четырехтрубную систему.

(i) Примечание

Участок как тип инженерной сети может выступать в качестве отсекающего устройства. Т.е. в этом случае его можно использовать для отключения объектов, например, потребителей.

Графический тип объекта- линейный, относится к объектам инженерных сетей и классифицируется как участок, отсекающий. Уникальный номер (ID) в структуре слоя тепловой сети – ID 6.

2.3.1. Начало и конец участка

Участок обязательно должен начинаться и заканчиваться одним из типовых узлов (объектом сети).

Условия завершения участка:

- Разветвление меняется расход;
- Изменение диаметра меняется сопротивление;
- Смена типа прокладки (канальная, бесканальная, воздушная) меняются тепловые потери;
- Смена вида изоляции (минеральная вата, пенополиуретан и т.д.) меняются тепловые потери;
- Смена состояния изоляции (разрушение, увлажнение, обвисание) меняются тепловые потери.

Пользователь может разбить трубопровод на разные участки в любом месте по своему желанию даже там, где тепловые и гидравлические свойства трубопровода не меняются. Например, трубопровод может быть разделен на участки задвижкой, смотровой камерой на магистрали или узлом, разграничивающим балансовую принадлежность.

2.3.2. Направление

На изображенных участках появляется стрелка, указывающая направление, заданное при его вводе (рисовании) от начального узла к конечному. Направление движения воды в подающем трубопроводе можно узнать, только после выполнения гидравлического расчета.

Включить отображение направлений можно в диалоговом окне Настройка слоя. Для этого следует:

- 1. Выбрать команду главного меню Карта Настройка слоя.
- 2. В открывшемся окне Загруженные слои выбрать слой тепловой сети.
- 3. Включить опцию Показ направлений.

После выполнения расчета значение расхода в подающем трубопроводе на некоторых участках может быть отрицательным. Отрицательный расход означает, что направление движения воды в подающем трубопроводе на участке не совпадает с направлением стрелки. При установленном флажке *Автоматически изменять направление* участков, после выполнения расчетов (наладочный, поверочный) стрелки будут ука-

зывать направление движения жидкости по подающему трубопроводу, при этом значение расхода в подающем трубопроводе будет всегда положительно. Подробнее о том, как включить эту опцию смотрите <u>Раздел 9.5, «Настройка протоколирования расчета»</u>.

Рисунок 2.7. Направление движения воды

На <u>Рисунок 2.7, «Направление движения воды»</u> изображены две схемы. На схеме слева участок вводился слева направо, во второй- справа налево. На участках подписаны полученные при расчете расходы по подающим и обратным трубопроводам. Значения расходов на обеих схемах отличаются только знаком, из-за различного направления стрелок на участках. В обоих случаях вода течет от источника по подающему трубопроводу к потребителю и от потребителя по обратному трубопроводу к источнику.

2.4. Потребитель

Потребитель – это символьной объект тепловой сети, характеризующийся потреблением тепловой энергии и сетевой воды.

В модели существует два вида потребителей:

Раздел 2.4.1, «Потребитель»

Раздел 2.4.2, «Обобщенный потребитель»

2.4.1. Потребитель

Потребитель – это конечный объект участка, в который входит один подающий и выходит один обратный трубопровод тепловой сети. Под потребителем понимается абонентский ввод в здание.

Условное обозначение потребителя в зависимости от режима работы:

Присоединение потребителя к тепловой сети и его внутреннее представление изображено на <u>Рисунок 2.8, «Слева: присоединение потребителя к тепловой сети, справа – его внутреннее представление»</u>.

Рисунок 2.8. Слева: присоединение потребителя к тепловой сети, справа – его внутреннее представление

На <u>Рисунок 2.9, «Правильное и неправильное изображение потребителя»</u> показано неверное и правильное присоединение потребителя к тепловой сети.

Рисунок 2.9. Правильное и неправильное изображение потребителя

Внутренняя кодировка потребителя зависит от схемы присоединения тепловых нагрузок к тепловой сети. Схемы могут быть элеваторные, с насосным смешением, с независимым присоединением, с открытым или закрытым отбором воды на ГВС. Схемы присоединения имеют разную степень автоматизации подключенной нагрузки, которая определяется наличием регулятора температуры, например на ГВС, регулятором расхода или нагрузки на систему отопления, регулирующим клапаном на систему вентиляции.

На данный момент в распоряжении пользователя 35 схем присоединения потребителей. Подробно рассмотреть вышеприведенные схемы подключения потребителей можно в разделе <u>Раздел A.1, «Расчетные схемы присоединения потребителей»</u>

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как потребитель. Уникальный номер (ID) в структуре слоя тепловой сети – ID 3

2.4.2. Обобщенный потребитель

Обобщенный потребитель – символьный объект тепловой сети, характеризующийся потребляемым расходом сетевой воды или заданным сопротивлением. Таким потребителем можно моделировать, например, общую нагрузку квартала.

Условное обозначение обобщенного потребителя в зависимости от режима работы:

Такой объект удобно использовать, когда возникает необходимость рассчитать гидравлику сети без информации о тепловых нагрузках и конкретных схемах присоединения потребителей к тепловой сети. Например, при расчете магистральных сетей информации о квартальных сетях может не быть, а для оценки потерь напора в магистралях достаточно задать обобщенные расходы в точках присоединения кварталов к магистральной сети.

Элементы модели тепловой сети

Рисунок 2.10. Пример обобщенного потребителя

Обобщенный потребитель не всегда является конечным объектом сети. В связи с этим, обобщенный потребитель может быть установлен на транзитном участке. Схема подключения обобщенного потребителя к тепловой сети представлена на <u>Рисунок 2.11</u>, «Сеть с обобщенными потребителями».

Рисунок 2.11. Сеть с обобщенными потребителями

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как потребитель. Уникальный номер (ID) в структуре слоя тепловой сети – ID 12.

2.5. Узел

Узел- это символьный объект тепловой сети. В тепловой сети узлами являются все объекты сети, кроме источника, потребителя и участков. В математической модели внутреннее представление объектов (кроме источника, потребителя, перемычки, ЦТП и регуляторов) моделируется двумя узлами, установленными на подающем и обратном трубопроводах.

2.5.1. Простой узел

Простой узел – это символьный объект тепловой сети, например, разветвление трубопровода, смена прокладки, вида изоляции или точка контроля для регулятора.

Условное обозначение узловых объектов в зависимости от режима работы:

На <u>Рисунок 2.12, «Слева однолинейное изображение узла, справа: внутреннее представление»</u> показан внешний вид узла в однолинейном изображении и во внутреннем представлении в математической модели. В математической модели объект представляется двумя узлами, установленными на подающем и обратном трубопроводах.

Рисунок 2.12. Слева однолинейное изображение узла, справа: внутреннее представление

На <u>Рисунок 2.13, «Подключение подающего трубопровода к тепловой сети»</u> представлен вариант подключения одного трубопровода (подающего) к двухтрубной тепловой сети.

Рисунок 2.13. Подключение подающего трубопровода к тепловой сети

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 2.

2.6. Центральный тепловой пункт (ЦТП)

ЦТП – это символьный элемент тепловой сети, характеризующийся возможностью дополнительного регулирования и распределения тепловой энергии.

Условное обозначение ЦТП

Наличие такого узла подразумевает, что за ним находится тупиковая сеть, с индивидуальными потребителями, как показано на <u>Рисунок 2.14, «Двухтрубная сеть после</u> <u>ЦТП»</u>.

Рисунок 2.14. Двухтрубная сеть после ЦТП

Внутренняя кодировка ЦТП зависит от схемы присоединения тепловых нагрузок к тепловой сети. Это может быть, например, групповой элеватор или независимое подключение группы потребителей. На данный момент в распоряжении пользователя 29 схем присоединения ЦТП.

В ЦТП может входить и выходить только один участок тепловой сети (подающий и обратный трубопровод). Причем входящий участок должен быть направлен к ЦТП (направление стрелки), а выходящий от ЦТП к следующему объекту. На <u>Рисунок 2.15</u>, <u>«Слева: неправильное изображение ЦТП, справа – правильное»</u> представлено правильное и неправильное изображение ЦТП в тепловой сети.

Рисунок 2.15. Слева: неправильное изображение ЦТП, справа – правильное

Исключением из данного правила является четырёхтрубная тепловая сеть после ЦТП, в этом случае из ЦТП выходит два участка- один основной и один вспомогательный.

Вспомогательный участок используется для подключения трубопровода горячего водоснабжения. Подробнее о вспомогательном участке <u>Раздел 2.11.1, «Вспомогательный участок для ЦТП»</u>. Пример однолинейного изображения четырехтрубной тепловой сети после ЦТП показан на <u>Рисунок 2.16, «Однолинейное изображение четырех-</u> трубной сети после ЦТП». Элементы модели тепловой сети

Рисунок 2.16. Однолинейное изображение четырехтрубной сети после ЦТП

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 8

2.7. Насосная станция

Насосная станция – символьный объект тепловой сети, характеризующийся заданным напором или напорно-расходной характеристикой установленного насоса.

Условное обозначение насосной станции -

Рисунок 2.17. Сверху: однолинейное изображение сети, снизувнутреннее представление.

Для задания направления действия насоса направление участков, входящих в него должно совпадать с направлением работы насоса (<u>Рисунок 2.18, «Неправильное и правильное и зображение насоса»</u>).

Рисунок 2.18. Неправильное и правильное изображение насоса

В насосную станцию обязательно должен входить и выходить только один участок, как показано на <u>Рисунок 2.19, «Слева: неправильное изображение насоса, справа – правильное</u>».

Рисунок 2.19. Слева: неправильное изображение насоса, справа – правильное

При последовательной установке все насосы необходимо изобразить на схеме, как показано на <u>Рисунок 2.20, «Слева: последовательно работающие насосы, справа: парал-</u> лельно работающие разные марки насосов» слева.

Рисунок 2.20. Слева: последовательно работающие насосы, справа: параллельно работающие разные марки насосов

Если насосы установлены на станции параллельно, но имеют разные марки или характеристики, каждый необходимо изобразить на схеме, как на <u>Рисунок 2.20, «Слева:</u> последовательно работающие насосы, справа: параллельно работающие разные марки насосов».

Если же насосы установлены параллельно и имеют одинаковые характеристики, то на схеме их можно обозначить одним объектом, задав количество работающих насосов.

Насос можно моделировать двумя способами:

- как идеальное устройство которое изменяет давление в трубопроводе на заданную величину
- как устройство, работающее с учетом реальной напорно-расходной характеристики конкретного насоса.

В первом случае просто задается значение напора насоса на подающем и (или) обратном трубопроводе. Если значение напора на одном из трубопроводов равно нулю, то насос на этом трубопроводе отсутствует. Если значение напора отрицательно, то это означает, что насос работает навстречу входящему в него участку. На <u>Рисунок 2.21</u>, «Моделирование работы насоса напором» ниже видно, как различные направления участков, входящих и выходящих из насоса в сочетании с разными знаками напора на насосе влияют на результат расчета, отображенный на пьезометрических графиках. Когда задается только значение напора на насосе, оно остается неизменным не зависимо от проходящего через насос расхода.

Рисунок 2.21. Моделирование работы насоса напором

Второй способ позволяет использовать Справочник по насосным характеристикам. В справочнике для насоса можно задать его QH характеристику любым количеством точек. Подробнее об этом смотрите <u>Раздел 20.2, «Справочник по насосам»</u>.

Рисунок 2.22. Моделирование работы насоса QH характеристикой

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 4.

2.8. Задвижка

Задвижка – это символьный объект тепловой сети, являющийся отсекающим устройством. Задвижка кроме двух режимов работы (открыта, закрыта), может находиться в промежуточном состоянии, которое определяется степенью её закрытия. Промежуточное состояние задвижки должно определятся при её режиме работы Открыта.

Задвижку можно моделировать следующими способами:

- как исключительно запирающее устройство;
- как запорно-регулирующее устройство, работающее с учетом изменяющегося сопротивления затвора (клапана) в зависимости от степени открытия. Для этого сле-

дует использовать справочник по запорной арматуре, подробнее об этом смотрите <u>Раздел 20.3, «Справочник по запорной арматуре»</u>.

• сливное устройство, с заданным диаметром (<u>Раздел 2.8.1, «Слив через задвижку»</u>).

Условное обозначение запорно-регулирующего устройства в зависимости от режима работы:

Задвижка в однолинейном изображении представляется одним узлом, но во внутреннем представлении в зависимости от заданных параметров в семантической базе данных, может быть установлена на обоих трубопроводах <u>Рисунок 2.23, «Однолинейное</u> и внутренне представление задвижки».

Рисунок 2.23. Однолинейное и внутренне представление задвижки

В задвижку может входить только один участок и только один участок выходить. На <u>Рисунок 2.24, «Неправильное изображение задвижки»</u> показано неправильное изображение задвижки.

Рисунок 2.24. Неправильное изображение задвижки

Примечание

Задвижка в режиме закрыта, во внутреннем представлении моделируется двумя закрытыми задвижками на обоих трубопроводах.

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как отсекающее устройство. Уникальный номер (ID) в структуре слоя тепловой сети – ID 5.

Изображение задвижек, расположенных внутри тепловой камеры показано на <u>Рисунок 2.25</u>, «<u>Деталировка тепловой камеры</u>»</u>. Для этого следует изменить размер отоб-

ражения запорных устройств (<u>Раздел 4.3.2, «Изменение размеров символов тепловой</u> <u>сети»</u>), а также настроить символ тепловой камеры (<u>Раздел 4.3.3, «Изменение внешне-</u>го вида символов тепловой сети»).

(i)

Примечание

Видеоурок по настройке символов тепловой сети можно посмотреть пройдя по ссылке: <u>http://politerm.com/video-tutorials/LayerStructEditSymbol.htm</u>

Рисунок 2.25. Деталировка тепловой камеры

2.8.1. Слив через задвижку

Моделирование тепловой сети на сброс, в зависимости от давления в точке слива и диаметра отверстия, осуществляется с помощью типового объекта Задвижка. <u>Рисунок 2.26</u>, «Пример тепловой сети, работающей на слив»

Для этого следует указать Степень открытия (поля Per_pod или Per_obr) равной "-1", а также указать диаметр сливного отверстия, используя поля Условный диаметр на подающем или Условный диаметр на обр. (Dpod или Dobr).

При выполнении расчета в строку сообщений при этом выводится следующее сообщение: Предупреждение Z638: ID=2 Задвижка работает на слив из подающего (обратного) трубопровода.

Предупреждение

- Задвижка в режиме Открыта должна быть конечным объектом тепловой сети.
- Нельзя использовать после ЦТП.

На <u>Рисунок 2.26, «Пример тепловой сети, работающей на слив»</u> изображен пример тепловой сети, работающей на слив. Источник (например, геотермальный) подаёт теплоноситель по одному трубопроводу и осуществляет 100% подпитку. Давление в обратном трубопроводе определяется в результате расчета и зависит от расходов на слив.

Рисунок 2.26. Пример тепловой сети, работающей на слив

2.9. Перемычка

Перемычка- это символьный объект тепловой сети, моделирующий участок между подающим и обратным трубопроводами.

Условное обозначение перемычки в зависимости от режима работы:

Перемычка во внутреннем представлении является участком, соединяющим подающий и обратный трубопроводы, как показано на <u>Рисунок 2.27, «Слева: однолинейное</u> изображение сети, справа: её внутреннее представление».

Рисунок 2.27. Слева: однолинейное изображение сети, справа: её внутреннее представление

Так как перемычка в однолинейном изображении представлена узлом, то изобразить соединение между подающим трубопроводом одного участка и обратным трубопроводом другого участка можно, как представлено на <u>Рисунок 2.28, «Слева: однолиней-</u>ное изображение сети, справа: её внутреннее представление».

Рисунок 2.28. Слева: однолинейное изображение сети, справа: её внутреннее представление

С помощью перемычек можно моделировать летний режим работы открытых систем централизованного теплоснабжения, в случаях, когда теплоноситель может подаваться к потребителям как по подающему, так и по обратному трубопроводам, без возврата воды на источник. Переходы между подающими и обратными трубопроводами осуществляются через перемычки. Изображение этой схемы и её внутреннее представление показаны на рисунке <u>Рисунок 2.29</u>, <u>«Сверху: однолинейное изображение сети, снизу: её внутреннее представление»</u>.

Рисунок 2.29. Сверху: однолинейное изображение сети, снизу: её внутреннее представление

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 11.

2.10. Дросселирующие устройства

Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) в структуре слоя тепловой сети – ID 7.

К типу дросселирующий узел относятся следующие объекты:

- Раздел 2.10.1, «Дроссельная шайба»
- Раздел 2.10.2, «Регулятор располагаемого напора»
- Раздел 2.10.3, «Регулятор давления»
- Раздел 2.10.4, «Регулятор расхода»
- Раздел 2.10.5, «Локальное сопротивление»

2.10.1. Дроссельная шайба

Дроссельная шайба – это символьный объект тепловой сети, характеризуемый фиксированным сопротивлением, зависящим от диаметра шайбы. Дроссельная шайба имеет два режима работы:

Для объекта *Вычисляемая шайба* в результате наладочного расчета определяется количество шайб и их диаметр.

Для Устанавливаемой шайбы необходимо занести информацию о количестве этих устройств и их диаметре.

Дроссельная шайба в однолинейном изображении представляется одним узлом, но во внутреннем представлении в зависимости от заданных параметров в семантической базе данных, может быть установлена на обоих трубопроводах, как показано на <u>Рисунок 2.30</u>, «Слева – однолинейное изображение сети, справа – внутреннее представление».

Рисунок 2.30. Слева – однолинейное изображение сети, справа – внутреннее представление

С точки зрения модели дроссельная шайба это фиксированное сопротивление, определяемое диаметром шайбы, которое можно устанавливать как на подающем так и на обратном трубопроводе. Так как это нерегулируемое сопротивление, то величина гасимого шайбой напора зависит от квадрата проходящего через шайбу расхода. На <u>Рисунок 2.31, «Зависимость потерь от расхода»</u> ниже видно, как меняются потери на шайбе, установленной на подающем трубопроводе, при увеличении расхода через нее в два раза.

Рисунок 2.31. Зависимость потерь от расхода

Является одним из режимов работы объекта Дросселирующий узел. Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) типа в структуре слоя тепловой сети – ID 7.

Номер режима Вычисляемой шайбы- 1.

Номер режима Устанавливаемой шайбы- 2.

2.10.2. Регулятор располагаемого напора

Регулятор располагаемого напора – это символьный объект тепловой сети, поддерживающий заданный располагаемый напор после себя.

Регулятор располагаемого напора на подающем трубопроводе

Регулятор располагаемого напора на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном, как показано на <u>Рисунок 2.32, «Сверху: однолинейное изображение сети, снизу – внутренне представление»</u>.

Рисунок 2.32. Сверху: однолинейное изображение сети, снизу – внутренне представление

Является одним из режимом работы объекта Дросселирующий узел. Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) типа в структуре слоя тепловой сети – ID 7.

Номер режима Регулятора напора- 3.

2.10.3. Регулятор давления

Регулятор давления – это символьный объект тепловой сети, поддерживающий заданное давление в трубопроводе «до себя» или «после себя».

Регулятор давления на подающем трубопроводе

Регулятор давления на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном, как показано на <u>Рисунок 2.33, «Сверху: однолинейное изображение сети, снизу – внутренне представление»</u>.

Рисунок 2.33. Сверху: однолинейное изображение сети, снизу – внутренне представление

Регулятор давления, установленный на подающем или обратном трубопроводе, может контролировать давление «до себя» или « после себя», как показано на <u>Рисунок 2.34</u>, «Изображения регуляторов давления "до себя" и "после себя"». Для того чтобы ука-

зать как работает регулятор необходимо установить узел контроля (простой узел) и соединить их вспомогательным участком (<u>Раздел 2.11.2, «Указатель узла измерения</u> регулятора»Раздел 2.5.1, «Простой узел»).

Рисунок 2.34. Изображения регуляторов давления "до себя" и "после себя"

На <u>Рисунок 2.38, «Регулятор давления «до себя» на подающем трубопроводе»</u> показан участок трубопровода, на котором установлен регулятор давления «до себя» на подающем трубопроводе, регулирующий давление на всасывающем патрубке насосной станции.

На рисунке ниже показано, что при увеличение в два раза расхода через регулятор, установленный в обратном трубопроводе, давление в регулируемом узле остается постоянным. Величина сопротивления регулятора может изменяться в пределах от бесконечности до сопротивления полностью открытого регулятора. Если условия работы сети заставляют регулятор полностью открыться, то он начинает работать как нерегулируемый дросселирующий узел.

Рисунок 2.35. Регулятор давления на обратном трубопроводе

Является одним из режимов работы объекта Дросселирующий узел. Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) типа в структуре слоя тепловой сети – ID 7.

Номер режима Регулятора давления в обратном- 5.

Номер режима Регулятора давления на подающем- 6.

2.10.4. Регулятор расхода

Регулятор расхода – это символьный объект тепловой сети, поддерживающий заданным пользователем расход теплоносителя.

Регулятор расхода на подающем трубопроводе

Регулятор расхода на обратном трубопроводе

Устанавливается в зависимости от выбранного режима, на одном из трубопроводов: подающем или обратном.

Является одним из режимов работы объекта Дросселирующий узел. Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) типа в структуре слоя тепловой сети – ID 7.

Номер режима Регулятора расхода на подающем трубопроводе- 7.

Номер режима Регулятора расхода на обратном трубопроводе- 8.

2.10.5. Локальное сопротивление

Локальное сопротивление – это символьный объект тепловой сети, на котором при необходимости можно задать сопротивление в любой точке сети. Например, в том месте, где происходит резкое сужение либо расширение трубопровода или установлен диффузор (постепенное расширение), конфузор (постепенное сужение), грязевик, прибор учета...

Может быть установлен на подающем, обратном или на обоих трубопроводах одновременно, в зависимости от заданных исходных данных.

Локальное сопротивление

Так как это нерегулируемое сопротивление, то величина потерь напора зависит от квадрата проходящего расхода. На рисунке ниже (<u>Рисунок 2.36, «Локальное сопротивление на обратном трубопроводе»</u>) видно, как меняются потери на локальном сопротивлении, установленном на обратном трубопроводе, при увеличении расхода через него в два раза.

Рисунок 2.36. Локальное сопротивление на обратном трубопроводе

Является одним из режимов работы объекта Дросселирующий узел. Графический тип объекта- символьный, относится к объектам инженерных сетей и классифицируется как узел. Уникальный номер (ID) типа в структуре слоя тепловой сети – ID 7.

Номер режима Локального сопротивления- 9.

2.11. Вспомогательный участок

Вспомогательный участок – это линейный объект математической модели, имеющий два режима работы. Вспомогательный участок (*Указатель узла измерения регулятора*) при использовании его с регуляторами давления «до себя» и «после себя» указывают место контролируемого параметра. Вспомогательный участок для ЦТП определяет начало трубопроводов горячего водоснабжения при четырёхтрубной тепловой сети после ЦТП.

Примечание

Никаких исходных данных по вспомогательному участку заносить не требуется.

Графический тип объекта- линейный, относится к объектам инженерных сетей и классифицируется как участок, отсекающий. Уникальный номер (ID) в структуре слоя тепловой сети – ID 13.

- Раздел 2.11.1, «Вспомогательный участок для ЦТП»
- <u>Раздел 2.11.2, «Указатель узла измерения регулятора»</u>

2.11.1. Вспомогательный участок для ЦТП

В случае, если после ЦТП вода на систему отопления и вода на ГВС выходит по разным трубопроводам можно воспользоваться вспомогательным участком. Данный вспомогательный участок работает только практически со всеми схемами ЦТП, кроме схем № 1, 4, 7, 21, 22. Он предназначен для того, чтобы указать трубопровод подающий теплоноситель на систему отопления и трубопровод подающий воду на систему горячего водоснабжения. Это небольшой участок заканчивается простым узлом, к которому подключается трубопровод горячего водоснабжения, как показано на <u>Рисунок 2.37</u>, «Подключение трубопровода ГВС».

Рисунок 2.37. Подключение трубопровода ГВС

2.11.2. Указатель узла измерения регулятора

По умолчанию Регулятор давления регулирует давление в том месте, где установлен. Вспомогательный участок предназначен для того, чтобы узел контроля за регулиру-

емым параметром для регулирующего устройства мог быть задан самим пользователем. На рисунке ниже показан участок трубопровода на котором установлен регулятор давления регулирующий давление после насосной станции, но контролирующий давление перед насосной станцией.

Рисунок 2.38. Регулятор давления «до себя» на подающем трубопроводе

Глава 3. Моделирование тепловой сети

3.1. Введение

В данном разделе рассказывается о том, как изображается и редактируется математическая модель тепловой сети, а также меняется её структура (добавляются новые режимы работы, меняется их внешний вид и размеры).

В основе математической модели для расчетов сетей лежит граф. Как известно, граф состоит из узлов, соединенных дугами. В любой сети можно выделить свой набор узловых элементов. Так в теплоснабжении- это источники, тепловые камеры, потребители, насосные станции, запорная арматура. Дугами графа являются участки сети-трубопроводы. Участок обязательно должен начинаться в каком-то узле и заканчиваться узлом.

Начиная рисовать участок сети, нужно будет обязательно либо привязать начало участка к одному из существующих узлов, либо выбрать узел, из набора узлов, в котором этот участок будет начинаться. Точно так же, заканчивая ввод участка, нужно либо привязать его конец к одному из существующих узлов, либо установить новый узел, в котором участок будет закончен. При перемещении какого-либо узла (изменении его координаты), вместе с ним переместятся начала и концы участков, связанных с этим узлом. То есть изменение положения узлов в пространстве не приведет к изменению топологии графа, сеть не "развалится".

С точки зрения математической модели совершенно неважно, будут ли координаты узлов и точек перелома участков введены по координатам с геодезической точностью, обрисованы по какой-то подложке или просто изображены схематично. Подробнее об изображении сети смотрите раздел <u>Раздел 3.2, «Изображение тепловой сети на карте»</u>. Важно, что нужные пары узлов соединены дугами, и в результате "рисования" сети мы автоматически получаем и кодировку математического графа сети. Если рисунок выполнен правильно, то и граф сети ошибок содержать не будет.

Для нанесения тепловой сети необходимо использовать слой системы Zulu определенной структуры, к объектам которого подключены таблицы с необходимыми для расчетов полями. Наносить схему тепловой сети можно либо на заранее подготовленную подоснову, либо на чистую карту. Для проверки правильности нанесения схемы тепловой сети можно произвести проверку ее связности и определить все ли узлы и участки связаны между собой. Проверку можно производить как для полностью нанесенной сети, так и для готовых ее частей.

3.2. Изображение тепловой сети на карте

Тепловую сеть можно изображать на карте, с привязкой к местности (по координатам, с привязкой к окружающим объектам), что позволит в дальнейшем не только проводить теплогидравлические расчеты, но и решать другие инженерные задачи, зная точное местонахождение тепловых сетей. Пример изображения тепловой сети на карте с

привязкой к местности показан на <u>Рисунок 3.1, «Изображение тепловой сети на карте</u> с привязкой к местности».

Рисунок 3.1. Изображение тепловой сети на карте с привязкой к местности

3.2.1. Схематическое изображение тепловой сети

Тепловая сеть может быть изображена схематично, при этом неважно, будут ли координаты узлов (объектов тепловой сети) и углы поворотов (точки перелома участков) введены по координатам с геодезической точностью или обрисованы по подложке. Важно, чтобы нужные объекты тепловой сети (узлы) были соединены участками (дугами). Схематичное изображение модели тепловой сети позволяет быстро провести теплогидравлические расчеты, но не даёт возможности определить местонахождение своих сетей. Пример схематичного изображения тепловой сети показан на <u>Рисунок 3.2</u>, «Схематичное изображение сети».

Рисунок 3.2. Схематичное изображение сети

3.2.2. Упрощенное и детальное изображение сети

Степень детализации в обоих случаях: при изображении тепловой сети на карте с привязкой к местности и при схематичном изображении может быть различна. Например, на <u>Рисунок 3.3, «Упрощенное изображение сети»Рисунок 3.4, «Детальное изображение сети.»</u> изображены две эквивалентные схемы тепловой сети. Однако на <u>Рисунок 3.3, «Упрощенное изображение сети»</u> и <u>Рисунок 3.4, «Детальное изображение</u> <u>сети.»</u> детальное изображение- с прорисовкой П-образных компенсаторов и запорных устройств в тепловых камерах.

Рисунок 3.3. Упрощенное изображение сети

Рисунок 3.4. Детальное изображение сети.

Геометрические длины участков на <u>Рисунок 3.3, «Упрощенное изображение сети»</u> и <u>Рисунок 3.4, «Детальное изображение сети.»</u> различны, но для инженерных расчетов значения длины задаются в базе данных по участкам. Наличие компенсаторов и запорных устройств, влияет на гидравлические потери в тепловой сети. Все местные сопротивления должны быть занесены в базу данных, для адекватного моделирования гидравлических потерь.

В связи с этим точность и детальность отображения сети на карте на результаты расчетов не влияют

3.3. Последовательность действий

1. Создать слой тепловой сети

Для нанесения тепловой сети на карту необходимо предварительно создать слой тепловой сети. Подробнее об этом <u>Раздел 3.4, «Создание слоя тепловой сети»;</u>

2. Настроить структуру слоя: внешний вид, размеры символов;

Пользователь может изменить графическое отображение любого из объектов (размер, внешний вид), а также добавить к сформированной структуре новые объекты, например «Внезапное сужение (расширение)», «Граница балансовой принадлежности», «Узел учета тепловой энергии», «Компенсатор» и т.д. Подробнее о настройке структура слоя <u>Глава 4</u>, <u>Структура слоя</u>;

3. Нанести тепловую сеть на карту.

После создания слоя тепловой сети, модель можно изображать на карте. О том, как изображать и редактировать объекты тепловой сети, смотрите соответствующие раздели <u>Глава 5, *Ввод объектов сети*</u> и <u>Глава 6, *Редактирование сети*</u>

4. Проверить связность.

Для проверки правильности создания математической модели тепловой сети необходимо произвести проверку связности всех объектов сети между собой. Проверку можно производить как для полностью нанесенной сети, так и для ее частей. Подробнее о проверке связности <u>Раздел 6.3, «Контроль ошибок при вводе»</u>.

3.4. Создание слоя тепловой сети

(i) Примечание

Видеоурок по созданию слоя тепловой сети можно посмотреть пройдя по ссылке: <u>http://politerm.com.ru/video-tutorials/LayerCreateThermo.htm</u>

Для того чтобы создать слой тепловой сети надо:

1. Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку апанели инструментов. На экране появится панель теплогидравлических расчетов (<u>Рисунок 3.5, «Окно теплогидравлических расчетов ZuluThermo»</u>).

uluThermo					^ Слой
Наладка Поверка Температ С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета	урный график	Конструкторский	Надежность	Сервис	Оборудование

Рисунок 3.5. Окно теплогидравлических расчетов ZuluThermo

2. Выбрать вкладку Сервис и в появившемся окне (<u>Рисунок 3.6, «Вкладка Сервис окна теплогидравлических расчетов»</u>) нажать кнопку Создать новую сеть. На экране появится диалог создания новой тепловой сети.

ZuluThermo		>					
Пример тепловой сети		Слой					
Наладка Поверка Температурн	ый график Конструкторский Надежность Сервис	Оборудование					
Длины участков с карты	Создать новую сеть						
Отметки высот с карты	Обновить структуры таблиц						
Начала и концы участков	Начала и концы участков Добавить поля по надежности						
Калькулятор	Единицы измерения						
	Расчет тепловых потерь						
Расчет Настройки	Справка Закрыть						

Рисунок З.6. Вкладка Сервис окна теплогидравлических расчетов

3. В окне сохранения файла (<u>Рисунок 3.7, «Диалог сохранения слоя»</u>) выбрать диск и каталог, где будут храниться файлы моделируемой тепловой сети. Слой сети следует создавать в отдельной папке.

	E	выбор имени создав	аемого слоя	? ×
Папка:	🐌 D:\piter		v 🧿 🤌 🗵	ຯ ≍
Мои карты Фод	퉬 teploseti			
Серверы гео Герерия Рабочий стол				
Мои докумен				
Компьютер	14			
	имя файла: Тип файлов:	Casu Zulu (* 500)		Сохранить
Сеть	тип файлов.	слой 2010 (1.000)	*	Отмена

Рисунок 3.7. Диалог сохранения слоя

(i) Примечание

Имя слоя НЕОБХОДИМО ЗАДАВАТЬ ЛАТИНСКИМИ буквами, слой ОБЯЗАТЕЛЬНО должен создаваться в отдельной папке. Также важно, чтобы в пути до файлов слоя НЕ БЫЛО РУССКИХ БУКВ, допускается использование только латинских. Данное ограничение связано с тем, что при работе с локальными таблицами система Zulu использует программные средства, для которых не желательно наличие в имени папки русских символов

4. В строке Имя файла ввести имя файла латинскими символами (например **teploset**) и нажать кнопку Сохранить (см. <u>Рисунок 3.8, «Окно создания файла</u> <u>тепловой сети»</u>). Если будет выбрано имя файла уже существующего слоя, то в результате создания нового слоя существующий слой будет **уничтожен**, и вместо него создастся новый.

	E	выбор им	иени со	здаваемо	го сл	юя				?	×
Папка:	🔒 D:\piter				۷	0	ø	ø	×		
Мои карты	鷆 teploseti										
Серверы гео											
Рабочий стол											
Мои докумен											
Компьютер	Имя файла:	teploset								Сохран	ить
Сеть	Тип файлов:	Слои Zulu	ı (*.600)					~		Отме	на

Рисунок 3.8. Окно создания файла тепловой сети

5. В окне Новая система теплоснабжения (см. <u>Рисунок 3.9</u>, «Окно создания слоя теп-<u>ловой сети»</u>), в строке *Название слоя* ввести пользовательское имя слоя русскими символами, например **Тепловые сети**.

Новая система теплоснабжения	? ×								
1мя файла: D:\piter\teploseti\teploset.b00 Обзор									
Название слоя: Тепловые сети									
Таблицы: 🔍 Таблицы Paradox 🗸									
цинат План-схема Локальный датум									
🗹 добави	пь в карту								
ОК Отмена	Справка								
	Новая система теплоснабжения D:\piter\teploseti\teploset.b00 Tепловые сети Tаблицы Paradox uнат План-схема Локальный датум ØK Отмена								

Рисунок 3.9. Окно создания слоя тепловой сети

Примечание

Если не устанавливать опцию *добавить* в карту, то слой тепловой сети будет создан только на диске и для дальнейшей работы его нужно загрузить в карту.

- 6. Выбрать систему координат, с помощью кнопки Система координат. При работе с картой, выполненной в план-схеме (локальный датум), этот пункт следует пропустить.
- 7. Указать способ хранения таблиц, например Paradox, MS Access или другие.
- 8. После того как все окна диалога (см. <u>Рисунок 3.9</u>, «Окно создания слоя тепловой <u>сети»</u>) заполнены, нажать кнопку ОК.

3.4.1. Файлы слоя тепловых сетей

После создания слоя в папке тепловой сети сформировались файлы графической и семантической базы данных, созданные с именем заданным в окне Имя слоя (<u>Рисунок 3.8, «Окно создания файла тепловой сети»</u>), например, teploset. Имена таблиц и описателей баз данных образованы из имени слоя (teploset) и, например, названия объекта сети (istok), к которому они относятся (например, teploset_istok).

teploset.b00	Файлы графической базы данных Zulu.
teploset.b01	
teploset.b02	
teploset.b03	
teploset.b04	
teploset.b05	
teploset.b08	
teploset.zsx	
teploset.zx	
teploset_istok.db	Описатель базы данных и таблица по источникам.
teploset_istok.px	
teploset_istok.zb	
teploset_ctp.db	Описатель базы данных и таблица по ЦТП.
teploset_ctp.px	
teploset_ctp.zb	

Таблица 3.1. Файлы слоя тепловых сетей

teploset_drossel.db	Описатель базы данных и табли-
teploset_drossel.px	ца по дросселирующим устроиствам.
teploset_drossel.zb	
teploset_uzvvod.db	Описатель базы данных и табли-
teploset_uzvvod.px	ца по узлам ввода (потреоителям).
teploset_uzvvod.zb	
teploset_op.db	Описатель базы данных и табли-
teploset_op.px	ца по осоощенным потресителям.
teploset_op.zb	
teploset_kamera.db	Описатель базы данных и таб-
teploset_kamera.px	лица по тепловым камерам.
teploset_kamera.z	
teploset_nasos.db	Описатель базы данных и таблица по участкам.
teploset_nasos.px	
teploset_nasos.zb	
teploset_peremich.db	Описатель базы данных и таблица по перемычкам.
teploset_peremich.px	
teploset_peremich.zb	
teploset_zadvigka.db	Описатель базы данных и таблица по задвижкам.
teploset_zadvigka.px	
teploset_zadvigka.zb	

3.5. Загрузка слоя в карту

Если при создании слоя не была установлена галочка в окне *Добавить* в карту, то слой сети созданный в определенной директории, следует добавить в карту вручную, для этого необходимо:

^{1.} Выбрать команду главного меню Карта|Добавить слой, либо нажать кнопку и на панели инструментов. На экране появится диалог выбора слоя. (см. <u>Рисунок 3.10</u>, <u>«Диалог выбора слоя»</u>).

			Откры	ыть фай.	л				?	×
Папка:	🔒 D:\piter				¥	G	1 🖻	\times		
ГС Мои карты) teploseti									
Серверы гео										
Рабочий стол										
рои докумен										
М Компьютер										
									Откры	гь
Сеть	Тип файлов:	Слои Zu	ilu (*.600;*	.zrs;*.zrg;*.;	zl;*.zww;*.z	tr;*.gpx	;* v		Отмен	ia

Рисунок 3.10. Диалог выбора слоя

2. Зайти в нужную директорию и выделить слой тепловой сети (см. <u>Рисунок 3.11</u>, <u>«Диалог выбора слоя»</u>)

		C	ткрыть фай	йл				?	×
Папка:	🔒 D:\piter\ti	eploseti		¥	G 🤌	Þ	\times	•	
Мои карты Серверы гео	🗟 Тепловые	сети							
Рабочий стол									
Компьютер									
								Откры	ть
Сеть	Тип файлов:	Слои Zulu (*	".b00;".zrs;".zrg;"	°.zl;*.zww;*.zti	r;*.gpx;*	*		Отмен	ia

Рисунок 3.11. Диалог выбора слоя

3. Нажать кнопку Открыть или дважды щелкнуть по выбранному слою. Он будет добавлен в текущую карту.

Глава 4. Структура слоя

При создании слоя тепловой сети, он создаётся с заранее определенной стандартной структурой: символами, базами данных, типовыми объектами тепловой сети и режимами их работы. Редактирование структуры слоя позволяет настроить внешний вид объектов тепловой сети или добавить новые режимы работы для уже существующих объектов.

4.1. Общие сведения о структуре слоя

Чтобы открыть редактор структуры слоя следует:

- Отключить редактирование слоя (), для того чтобы можно было зайти в структуру слоя;
- 2. Выбрать команду главного меню Слой|Структура слоя или нажать кнопку №. На экране появится диалог выбора слоя. (см. <u>Рисунок 4.1, «Диалог выбора слоя»</u>).

			Откр	оыть (файл						?	×
Папка:	🔒 D:\piter					~	G	ø	Þ	\times	•••	
Мои карты Соот	iteploseti											
Рабочий стол												
КОИ ДОКУМЕН												
Компьютер											Откры	ль
Сеть	Тип файлов:	Слои Zu	ulu (*.600);*.zrs;*.	zrg;*.zl;*.:	zww;*.z	tr;*.gp	рх;*	~		Отме	на

Рисунок 4.1. Диалог выбора слоя

3. Войти в нужную папку, выделить слой тепловой сети и нажать кнопку Открыть (см. <u>Рисунок 4.2, «Выбор слоя»</u>);

			Открыт	ь файл						?	×
Папка:	🔒 D:\piter\t	eploseti			۷	0	ø	Þ	\times		
Мои карты Серверы гео Рабочий стол Мои докумен		сети									
Компьютер										Откры	ль
💙 Сеть	Тип файлов:	Слои Zuli	u (*.600;*.zrs	s;*.zrg;*.zl;*.zv	ww;*.z	tr;*.gp	ох;*	¥		Отме	на

Рисунок 4.2. Выбор слоя

На экране появится окно структуры слоя, изображенное на <u>Рисунок 4.3, «Окно структуры слоя»</u>. Диалоговое окно разделено на две части, в зависимости от того, какой пункт выделен с левой стороны, справа будут происходить соответствующие изменения, т.е. будет отображаться информация, относящаяся к выбранному пункту.

	Структура слоя - teploset.b00	×
Файл Правка		
🛃 🔯 🗙 Сохранить Новый Удалить	 С Ш Стменить Вернуть Выход Справка 	
 Слой ★ Сунволы ✓ Линии Заливки Базы данных Примитивы Типы и режимы Узел Цсточник Зузел Потребитель Насосная станция Задвижка Задвижка Зудастки Зиросселирующий узел ЦПП Потребитель ЦПП Обобщенный потребитель 	Слой Название: Тепловые сети Семейство файлов: teploset Размещение: D:\piter\teploset\ Система координат: План-схема Локальный датум	Изменить

Рисунок 4.3. Окно структуры слоя

Сохранение изменений и выход

Для сохранения изменений структуры слоя следует нажать кнопку Сохранить или выбрать пункт меню Файл|Сохранить.

Чтобы выйти из редактора структуры слоя нужно нажать кнопку Выход или выбрать пункт меню Файл|Закрыть. Если изменения не были сохранены, система предложит это сделать автоматически.

4.1.1. Символы

При выделении в окне Структура слоя пункта Символы выводится библиотека символов данного слоя, показанная на <u>Рисунок 4.4, «Окно библиотеки символов»</u>. Для изображения символьного объекта в слое, этот символ должен быть добавлен в библиотеку символов данного слоя.

Рисунок 4.4. Окно библиотеки символов

Закладка Символы снабжена следующими командными кнопками:

- В Новый...- Открывает редактор символа для создания нового символа. После создания символ добавляется в список символов слоя.
- Изменить...- Открывает редактор символа для символа, выбранного в списке. Так же редактор символов можно вызвать двойным щелчком левой кнопки мыши по символу, который надо изменить.
- Удалить Удаляет из библиотеки символов символ, отмеченный в списке. Если удаляемый символ используется одним из режимов структуры слоя или одним из объектов, удаление этого символа будет запрещено.
- 🔆 Операции 👻
- Импорт- Открывает диалог импорта символов, позволяющий импортировать символы из библиотек других слоев. После завершения импорта импортированные символы пополнят список символов данного слоя. (<u>Раздел 4.1.1.4, «Импорт символов</u> из библиотеки других слоев»).
- Удалить свободные- Удаляет из библиотеки символов все символы, не используемые ни одним из объектов. Это позволяет очистить библиотеку от лишних символов.

4.1.1.1. Создание нового символа в библиотеке символов

Для того чтобы создать новый символ надо:

- 1. Выбрать пункт Символы;
- 2. Нажать кнопку 🔽 Новый..., появится редактор символов.

(i) Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*.

4.1.1.2. Редактирование символа в библиотеке символов

Для редактирования символа следует:

- 1. Щелчком левой кнопки мыши по символу выделить символ для редактирования;
- Нажать кнопку Изменить... или дважды щелкнуть по символу. При этом открывается редактор символов для редактирования.

(i) Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*

4.1.1.3. Удаление символа из библиотеки

Чтобы удалить символ из библиотеки нужно:

- 1. Щелчком мыши выбрать символ;
- 2. Нажать кнопку Х Удалить или кнопку Deleteна клавиатуре;
- 3. Нажать кнопку Сохранить.

4.1.1.4. Импорт символов из библиотеки других слоев

Символы можно импортировать из одного слоя в другой, т. е., если символы уже были созданы для другого слоя, то их можно скопировать в библиотеку нашего слоя, для этого надо:

1. В диалоговом окне Структура слоя (🐸) в дереве выбрать пункт Символы;

2. Нажать кнопку Сперации и в открывшемся списке выбрать Импорт.... (Рисунок 4.5, «Импорт символов»).

Рисунок 4.5. Импорт символов

3. В открывшемся окне указать слой-источник, т.е. слой, из которого вы хотите импортировать символы и нажать кнопку Открыть. (см. <u>Рисунок 4.6, «Диалог выбора слоя»</u>)

		Выбор сло	я		? ×
Папка:	🐌 C:\Progra	am Files (x86)\Zulu 7.0\E\Ct	p v G	🌶 📂 🗙	
Б Загруженные	📓 Здания го 🗟 Кварталы 🗟 Система і	рода N города N централизованного теплосн	абжени		
ГС Мои карты			13		
Серверы гео					
Рабочий стол					
мои докумен					Открыть
Компьютер	Тип файлов:	Слои Zulu (*.600)		~	Отмена

Рисунок 4.6. Диалог выбора слоя

4. Все символы выбранного слоя появятся в верхнем списке символов, как на <u>Рисунок 4.7, «Окно импорта символов»</u>. В нижнем списке отображаются выбранные символы для импорта. Если вы случайно выбрали не тот слой-источник, нужно нажать на кнопку Выбор слоя, чтобы указать новый.

		\mathbf{X}	T	^	Добавить
6. Потребитель (Отключен)	10. Насосная станция (0	24. Приборы учета в работе	1. Источник (работа)		Добавить все
4					
2. Источник	5. Потребитель	8. Групповой	9. Насосная	~	
					Исключить
					Исключить вс

Рисунок 4.7. Окно импорта символов

- 5. Щелчком мыши выбрать символ в верхнем списке;
- 6. Нажать кнопку Добавить или сделать двойной щелчок левой кнопкой мыши по символу. Выделенный символ появится в нижнем списке (см. <u>Рисунок 4.8, «Окно им-</u> <u>порта символов»</u>). Таким же образом добавить необходимые символы.

Рисунок 4.8. Окно импорта символов

- 7. Нажать кнопку Импортировать. Символы из нижнего списка, будут добавлены в библиотеку;
- 8. Нажать кнопку Закрыть;
- 9. В окне Структура слоя нажать кнопку Сохранить.

Описание кнопок диалога Импорт символов представлено ниже:

- Выбор слоя- Кнопка выбора текущего слоя-источника. После выбора слоя символы из его библиотеки заполняют верхний список диалога.
- Добавить все- Добавляет все символы из верхнего списка в нижний список.
- Добавить- Добавляет текущий символ верхнего списка в нижний список. То же самое произойдет при двойном щелчке мыши на символ из верхнего списка.
- Исключить- Исключает текущий символ из нижнего списка.
- Исключить все- Очищает нижний список.
- Импортировать- Добавляет все символы из нижнего списка в библиотеку символов слоя.
- Закрыть- Закрывает диалог без импорта.

4.1.2. Базы данных

При выделении в окне Структура слоя пункта Базы данных выводится список всех подключенных к слою баз данных. (см. <u>Рисунок 4.9, «Вкладка «Базы данных»»</u>)

Структура слоя - teploset.b00				
Файл Правка				
🛃 🔯 🗙 Сохранить Новый Удалить С	💙 (° 🛄 🎯 Отменить Вернуть Выход Спра	вка		
ща Слой ★ Символы ✔ Линии	Базы данных 🎁 Создать 😚 Добавить 🎍	🕻 Конструктор 🗙 Удалить		
🥥 Заливки	Название	Название	ID	
Базы данных	🔊 Источник	D:\piter\teploset\teploset_istok.zb	1	
😴 Примитивы 🗤	🔊 Узел	D:\piter\teploset\teploset_kamer	2	
Паражимы	🔊 Потребитель	D:\piter\teploset\teploset_uzvvo	3	
	🔊 Насосная станция	D:\piter\teploset\teploset_nasos	4	
н 🛛 Потребитель	🔊 Задвижка	D:\piter\teploset\teploset_ZADVI	5	
ногрески станция	🔊 Участки	D:\piter\teploset\teploset_uch.zb	6	
🕀 🔽 Задвижка	🔊 Дросселирующий узел	D:\piter\teploset\teploset_drosse	7	
🗄 🔁 Участки	🔊 ЦТП	D:\piter\teploset\teploset_ctp.zb	8	
표 🛐 Дросселирующий узел	🔊 Перемычка	D:\piter\teploset\teploset_Peremi	9	
🕀 🔽 ЦТП	🔊 Обобщенный потребитель	D:\piter\teploset\teploset_op.zb	10	
🕀 🛐 Перемычка				
표 🛐 Обобщенный потребитель				
표 🔁 Вспомогательный участок				

Рисунок 4.9. Вкладка «Базы данных»

Закладка Базы данных снабжена следующими командными кнопками:

Кнопка	Описание
Создать	Позволяет создать новую базу данных. При нажатии на эту кнопку появится окно Новая база данных, в строке Назва- ние базы данных надо вписать название вашей новой базы.
Добавить	Позволяет добавить уже готовую базу данных в струк- туру слоя. После нажатия открывается стандартное ок- но выбора файла, в котором надо указать какую базу данных вы хотите добавить и нажать кнопку Открыть.
Конструктор	Данная кнопка будет активна только в том случае, если в списке выделена база данных. Она открывает диалого- вое окно Редактор баз данных, в котором имеется возмож- ность отредактировать выделенную в списке базу данных.
Удалить	Удаляет из списка выделенную базу данных. Удале- ние произойдет только в том случае, если эта база дан- ных не используется ни одним из типов структуры слоя.

(i) Примечание

Подробнее о создании и редактировании баз данных можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Семантические базы данных*.

4.2. Типы объектов

- Раздел 4.2.1, «Подключенная к типу база данных»
- <u>Раздел 4.2.2, «Создание нового типа объектов»</u>
- <u>Раздел 4.2.3, «Удаление типа»</u>
- Раздел 4.2.4, «Редактирование параметров уже существующего типа»

Для моделирования тепловой сети используются типовые объекты (см. подробнее в справочном пособии ГИС Zulu в разделе *Общие сведения* |*Слои*). Создание типов и ре-

жимов, а также их редактирование происходит в диалоговом окне Структура слоя (🕮).

Тип объекта определяет, какую функцию данный типовой объект должен выполнять, например Источник – является источником тепловой энергии, Потребитель – потребителем тепловой энергии и т.д. К типовым объектам может привязываться семантическая база данных.

Каждый типовой объект, в свою очередь, может иметь несколько режимов, которые задают различные способы работы (отображения) типового объекта. Например, тип объекта- задвижка, режимы работы – открыта и закрыта. Подробнее о режимах рассказывается в соответствующем разделе.

Дерево типов и режимов находится в структуре слоя тепловой сети. При выделении левой кнопкой мыши типа объекта (например, источник), в дереве типов и режимов (<u>Рисунок 4.10, «Вкладка «Тип объекта»</u>) справа откроется вкладка, в которой отобразятся свойства выделенного типа.

Структура слоя - teploset.b00				
Файл Правка				
Сохранить Новый Удалить	 Сч Отменить Вернуть Выход Справка 			
 Слой Слой Символы Линии Заливки Базы данных Примитивы Типы и режимы Зисточник Узел Потребитель Задвижка Задвижка Задвижка Зарыжка Зарыжка Зпросселирующий узел З Перемычка З Перемычка З Собщенный потребитель В спомогательный участок 	Источник - Типы и режимы Название: Источник ID: 1 Графический тип: © Символьный © объект инженерных сетей © источник отсекающее устройство Опотребитель узел Линейный © участок отсекающий Площадной База данных:			

Рисунок 4.10. Вкладка «Тип объекта»

На открывшейся вкладке диалога расположены следующие разделы:

- Название- В данной строке отображается название типа, оно же одновременно отображается в дереве типов;
- ID- Отображается ID выделенного типа, т.е. номер, который за данным типом закреплен. У каждого типа свой номер;
- Графический тип Типовые объекты могут быть символьными, линейными и площадными. Символьный тип имеет дополнительный признак объект инженерных сетей, наличие которого позволяет конкретизировать какие функции (источник, потребитель, простой узел или запорной устройство) этот тип выполняет.

Линейный тип имеет два дополнительных признака:

- *участок* наличие этого признака позволит системе относиться к объектам такого типа как к участкам инженерной сети, т.е. при вводе потребует наличия на своих концах объектов символьного типа;
- *отсекающий* при установленном флажке, участок будет рассматриваться как отсекающее устройство, т. е. отключение на схеме можно будет производить участком.

4.2.1. Подключенная к типу база данных

Каждый типовой объект слоя использует свою семантическую базу данных. Например, на <u>Рисунок 4.11, «Выбор базы данных»</u>, представленном ниже, в дереве типов и режимов выделен тип Потребитель, и видно, что в разделе База данных указана используемая этим типом база- Потребитель.

Структура слоя - teploset.b00				
Файл Прав	ка			
🛃 Сохранить	🖹 🖕 🗙 Новый Удалить	 С П Отменить Вернуть Выход Справка 		
🔩 Слой		Потребитель - Типы и режимы		
🛨 Симво 🗸 Линии	олы 4	Название: Потребитель ID: 3		
💋 Залив 🍞 Базы	зки данных	Графический тип: —————————————————————		
💥 Прим	итивы	🖲 Символьный		
😑 🗁 Типы	и режимы	🗹 объект инженерных сетей		
н <mark>в р</mark> ис	сточник	О источник О отсекающее устройство		
 № 3 Зэел № 3 Потребитель № 3 Насосная станция № 3 Задвижка № Участки № 3 Дросселирующий узел № 10 ПГ 		🔘 потребитель 🔘 изел		
		- flueročen rč		
		Линсиныи		
		участок отсекающии		
		🔵 Площадной		
	времычка	0		
🕀 🚺 Od	, бобщенный потребитель	О Текстовый		
🕀 🔁 Bo	спомогательный участок	База данных:		
		Задвижка		
		🗐 Участки		
		👜 Дросселирующий узел		

Рисунок 4.11. Выбор базы данных

4.2.2. Создание нового типа объектов

Предупреждение

В слое тепловых сетей можно создавать новые типы объектов только в том случае, если они не будут участвовать в расчетах.

Можно создать новые режимы работы для стандартных объектов, включенных в математическую модель тепловой сети.

Для создания нового типа объекта следует:

1. На панели инструментов окна Структура слоя нажать кнопку Новый... или пункт меню Правка Новый тип... (см. <u>Рисунок 4.12</u>, «Создание нового типа»).

Структура слоя - teploset.b00				
Файл Правка				
🛃 Сохранить	🖹 🖌 Х Новый Удали	ить Отменить Верн	иуть Выход Справка	
ा Слой ★ Симе ∼ Лини Д Зали	Новый тип Новый режим и вки	И Название:	Тепловые сети	
🌖 Базь № Прим 🖃 🧁 Типь	і данных литивы і и режимы Істочник	Семейство файлов: Размещение:	teploset D:\piter\teploset\	
	Ізел Іотребитель Іасосная станция	Система координат:	План-схема Локальный датум	Изменить

Рисунок 4.12. Создание нового типа

2. В строке *Название* открывшейся закладки ввести пользовательское название типа, которое одновременно отобразится и в появившейся строке дерева типов. Например, **Смотровая камера**, как показано на <u>Рисунок 4.13</u>, «Название нового типа».

Рисунок 4.13. Название нового типа

- 3. Выбрать графический тип создаваемого объекта (если это объект инженерной сети, то необходимо определить какие функции он выполняет в сети: источник, потребитель, отсекающее устройство или узел). Как видно на следующем рисунке, Смотровая камера относится к типу узел;
- 4. Если надо, чтобы созданный тип использовал предварительно созданную базу данных, сделать щелчок левой кнопкой мыши по строке *База данных* и в выпадающем списке выбрать нужную базу, как показано на <u>Рисунок 4.14, «Выбор базы для</u> <u>нового типа»</u>. Если база данных этому типу не нужна, этот пункт можно не выполнять.

Рисунок 4.14. Выбор базы для нового типа

- 5. Далее для созданного типа следует создать режимы его работы (отображения), подробнее об этом смотрите соответствующий раздел (*Создание нового режима*);
- 6. Нажать кнопку Сохранить.

4.2.3. Удаление типа

Для удаления существующего типа следует:

- 1. Установить курсор в дереве типов на удаляемый тип;
- 2. Нажать кнопку Удалить на панели инструментов;
- 3. Нажать кнопку Сохранить.

👔 Примечание

Тип можно удалить только тогда, когда он не имеет режимов.

4.2.4. Редактирование параметров уже существующего типа

Для редактирования параметров существующего типа надо:

- 1. Щелкнуть на строку с именем этого типа в дереве типов, в правой части окна откроется вкладка, относящаяся к выделенному типу;
- 2. Провести необходимые изменения;
- 3. Нажать кнопку Сохранить.

4.3. Режимы объектов

- Раздел 4.3.1, «Создание нового режима объекта»
- Раздел 4.3.1.2, «Правила добавления режимов»
- <u>Раздел 4.3.2, «Изменение размеров символов тепловой сети»</u>
- Раздел 4.3.3, «Изменение внешнего вида символов тепловой сети»
- <u>Раздел 4.3.4</u>, «Удаление режима»
- Раздел 4.3.5, «Импорт типов и режимов»
- Раздел 4.3.6, «Пример создания режима для уже существующего типа «Узел»»

Любой **типовой** объект, для его отображения на карте, должен иметь хотя бы один режим работы. Для стандартных объектов, включенных в математическую модель тепловой сети, режимы их работы созданы по-умолчанию.

Настройка отображения типовых объектов и режимом их работы:

Структура слоя - teploset.b00 *				
Файл Правка				
Баранить Новый Удал	 Сч Ш Отменить Вернуть Выход Справка 			
🖳 Слой	Работа - Источник - Типы и режимы			
★ Символы 👡 Линии	Название: Работа Образец:			
Заливки Эр Базы данных Эт Примитивы Примитивы Примитивы	символ:			
 Источник Работа Отклюдин 	размер: 100 🔹 цвет: 🗾 У Изменить			
 	состояние: Включен 🗸			
	 Масштабировать Не увеличивать больше указанного размера Ориентировать при вводе участков Поворачивать на 90° Ориентация в верхней полуокружности 			

Рисунок 4.15. Вкладка «Режим символьного объекта»

Вкладка режима на <u>Рисунок 4.15, «Вкладка «Режим символьного объекта»»</u> имеет следующие элементы управления:

• Кнопки Изменить и Новый- позволяют изменять существующее и создавать новое отображение выбранного режима в редакторе символов;

👔 Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе *Работа с векторными слоями Редактор структуры слоя Редактор символов*.

• Для регулирования размеров символов на карте вводится масштабирующий коэффициент, который задается в строке *Размер*. Поскольку размеры символов из библиотеки символов задаются в относительных единицах (пикселях), то заранее неизвестно, какого размера они будут на той или иной карте, так как слой может создаваться для масштабов области, города, квартала, помещения. Чем больше значение коэффициента, тем крупнее будут выглядеть символы на карте (при одном и том же масштабе карты);

- Флажок *Масштабировать* включает режим масштабирования символа, т. е. изменение размеров символа при изменении масштаба карты;
- Флажок не увеличивать больше указанного размера- не позволяет увеличивать символ, когда масштаб карты становится меньше указанного в строке Размер;
- Флажок Ориентировать при вводе участков если этот флажок отмечен, то объекты наносятся по направлению ввода участков;
- Флажок Поворачивать на 90 град поворачивает объект на 90 градусов относительно того, как он изображен в редакторе символов.

При задании режима для линейного типа, необходимо задать стиль вывода на экран, толщину на экране и толщину при печати (<u>Рисунок 4.16, «Режим линейного объекта»</u>).

Структура слоя - teploset.b00 *				
Файл Правка				
🚽 🔡 🕻 Сохранить Новый Уда	🗙 🍠 🕅 🛄 🎯 лить Отменить Вернуть Выход Справка			
Слой Символы Линии Заливки Базы данных Принитивы Типы и режины Узел Источник Узел З Узел З Аздвижка Масосная станци Задвижка Фтключек Отключек Отключ. пода	Включен - Участки - Типы и режимы Название: Включен Образец: Линии Цвет: Стиль: Г Толщина на экране: 2 пкс Стиль: Толщина при печати: 0.1 мм С Масштабировать Состояние: Включен У			

Рисунок 4.16. Режим линейного объекта

4.3.1. Создание нового режима объекта

При необходимости можно добавить дополнительные режимы работы для стандартных типовых объектов.

Важно понимать, что не стоит без необходимости добавлять в сеть новые режимы. Новые режимы имеет смысл добавлять только в том случае, если надо визуально выделить объекты одного типа друг от друга. Т.е., если на карте необходимо чтобы участки тепловой сети отличались по цвету (например, при изображении четырёхтрубной сети), то в тип Участки надо добавить четыре новых режима, причем, добавляя их надо соблюдать определенные правила!

Примечание

При создании нового режима следует учесть:

Для типовых объектов в окне Состояние выбирается проводимость для решения топологических задач. Однако для инженерных расчетов следует добавлять объекты в определенной последовательности и по определенным правилам.

4.3.1.1. Состояние объектов сети

Для типовых объектов в окне Состояние выбирается свойства объекта для решения топологических задач. Типовому объекту инженерных сетей можно указать следующее свойство *Проводимости*:

- Включен-проводимость во всех направлениях;
- Отключен- нет проводимости;
- Прямая проводимость-существует проводимость от входящих по направлению участков к выходящим;
- Обратная проводимость существует проводимость от выходящих по направлению участков к входящим.

Свойство проводимости объекта (участка, задвижки) используется только при решении топологических задач.

4.3.1.2. Правила добавления режимов

4.3.1.2.1. Участки

Участки задаются четверками режимов, которые воспринимаются программой следующим образом:

Номера режимов	Состояние
1, 5, 9 и т.д.	Включен
2, 6, 10 и т.д.	Отключен
3, 7, 11 и т.д.	Отключен обратный трубо- провод
4, 8, 12 и т.д.	Отключен подающий трубо- провод

Кроме этого для вновь созданных режимов работы объекта, следует указать в окне Состояние его проводимость. В этом случае режим будет добавлен правильно.

4.3.1.2.2. Потребители

Потребители задаются парами режимов, которые воспринимаются программой следующим образом: нечетный номер режима соответствует включенному состоянию, четный номер режима – отключенному.

Номера режимов	Состояние
1, 3, 5 и т.д.	Включен
2, 4, 6 и т.д.	Отключен

В случае отключения участка сети, все потребители, попавшие под отключение изменят режим работы на отключенный (перейдут в режим с номером на единицу больше), при обновлении состоянии сети.

4.3.1.2.3. Задвижки

Задвижки задаются парами режимов, которые воспринимаются программой следующим образом: нечетный номер режима соответствует открытому состоянию, четный номер режима – закрытому.

Номера режимов	Состояние
1, 3, 5 и т.д.	Открыта
2, 4, 6 и т.д.	Закрыта

Кроме этого для вновь созданных режимов работы объекта, следует указать в окне Состояние его проводимость, в этом случае режим будет добавлен правильно.

4.3.1.3. Последовательность действий по добавлению режима

Для создания нового режима следует:

1. В дереве Типы и режимы щелчком левой кнопкой мыши выделите тип, для которого создается новый режим, например Узел. (см. <u>Рисунок 4.17, «Создание нового</u> <u>режима»</u>).

	Структура слоя - teploset.b00 *	×
Файл Правка		
	x 🤊 (° 🛄 🎯	
Сохранить Новый Удал	лить Отменить Вернуть Выход Справка	
🖳 Слой	Узел - Типы и режимы	
★ Символы ~ Линии	Название: Узел ID: 2	
🥏 Заливки 🍞 Базы данных	Графический тип: ————————————————————————————————————	
🐳 Примитивы	Оимвольный	
Пипы и режимы Пипы и режимы	🗹 объект инженерных сетей	
	🔘 источник 🔹 🔘 отсекающее устройство	
📓 Т 🦣 ловая камера	🔘 потребитель 🛛 💿 узел	
🛛 Разветвление	🔵 Линейный	
📓 Смена диаметра 🕀 🛐 Потребитель	участок отсекающий	
Hacocнaя станция	🔵 Площадной	
🛨 🔼 Задвижка 🕀 🏹 Участки		
 Дросселирующий уз 	🔵 Текстовый	
🕀 🖪 ЦТП	База данных:	
🗄 🚺 Перемычка		
🗄 🗾 Обобщенный потреб	🖽 Yisen 🗸 🗸	
Вспомогательный уч		
🚨 Смотровая камера		
< >		

Рисунок 4.17. Создание нового режима

2. Нажать кнопку Новый... и в выпадающем списке выберите пункт Новый...|режим или пункт меню Правка| Новый режим... На экране появится следующее окно (см. <u>Рисунок 4.18, «Параметры нового режима»</u>).

Рисунок 4.18. Параметры нового режима

- 3. В строке название введите название режима, например **Граница** балансовой принадлежности;
- 4. Если режим задается для символьного типа, то из выпадающего списка символов нужно выбрать тот символ, которым будет отображаться режим.

Если символ, соответствующий требуемому режиму отображения отсутствует, символ следует создать в редакторе символов- кнопка Новый (подробнее см. справку по ГИС Zulu раздел *Создание и редактирование графического символа объекта. Редактор символов*). Если существующий символ по каким-то критериям не подходит для отображения режима, его можно отредактировать нажатием кнопки Изменить (подробнее см. справку по ГИС Zulu раздел *Создание и редактирование графического символа объекта. Редактор символов*).

Если режим задается для объекта инженерных сетей (участок или задвижка), которые могут являться отсекающими устройствами, то необходимо в окне Состояние выбрать соответствующую для данного режима проводимость.

Для символьного объекта также надо задать:

- размер, он задается в строке *размер* (подробнее см. справку по ГИС Zulu раздел *Изменение размеров символов*);
- *состояние* (Включен/Отключен), состояние задается только в том случае, если тип является объектом инженерных сетей: источником, или потребителем;

- при желании установить опцию Масштабировать, в этом случае включается режим масштабирования символа, т. е. изменение размеров символа при изменении масштаба карты;
- при желании установить опцию *Не* увеличивать больше указанного размера, она не позволяет увеличивать символ, когда масштаб карты становится меньше указанного в строке размер;
- при желании установить опцию Ориентировать при вводе участков, в этом случае объекты будут наноситься по направлению ввода участков;
- при желании установить опцию Поворачивать на 90 град., она поворачивает объект на 90 градусов относительно того, как он изображен в редакторе символов.

Для линейного графического типа объекта так же надо задать:

- цвет, он выбирается из открывающейся палитры;
- из списка *стиль* выбрать, стиль линии, если необходимого стиля нет в наличии, то его можно создать (см. справку по ГИС Zulu раздел *Создание и редактирование стиля линейных объектов*);
- указать толщину на экране (толщина указывается в пикселях);
- указать толщину при печати (толщина указывается в миллиметрах).

Структура слоя - teploset.b00 * 🛛 🗙			
<u>Ф</u> айл <u>П</u> равка			
Сохранить Новый Удал	< <> С П © пить Отменить Вернуть Выход Справка		
Слой Слой Символы Линии Заливки Базы данных Примитивы Газы данных Примитивы Гази Источник З Потребитель З Дадижка З Дросселирующий уз З ЦТП З Перемычка З Обобщенный потреб	Граница балансовой принадлежности - Узел - Типы и режимы Название: Граница балансовой принадлежности Образец: символ: размер: 35 • цвдт: • Изменить Новый Масштабировать Не увеличивать больше указанного размера • Поворачивать на 90° • Ориентировать при вводе участков Поворачивать на 90° • Ориентация в верхней полуокружности		

Рисунок 4.19. Создание нового режима

5. Для сохранения изменений структуры слоя нажать кнопку Сохранить.

4.3.2. Изменение размеров символов тепловой сети

Размеры символов задаются в относительных единицах, поэтому заранее неизвестно, какого размера они будут на той или иной карте, так как слой может создаваться для масштабов области, города, квартала, помещения. Для регулирования размеров символов на карте вводится масштабирующий отображение символов коэффициент, который задается в строке *Размер*. Чем больше значение коэффициента, тем крупнее будут выглядеть символы на карте (при одном и том же масштабе карты).

Для изменения размера символа тепловой сети следует:

1. В окне структура слоя () в дереве Типы и режимы щелчком левой кнопкой мыши выделить режим, для редактирования, например Задвижка Открыта (см. <u>Рисунок 4.20</u>, «Изменение размера символа тепловой сети»).

Рисунок 4.20. Изменение размера символа тепловой сети

- 2. В строке Размер изменить значение;
- 3. Нажать кнопку Сохранить. Изменения сразу отобразятся на карте.

4.3.3. Изменение внешнего вида символов тепловой сети

Для изменения внешнего вида объекта тепловой сети следует:

1. В окне структура слоя (№) в дереве Типы и режимы щелчком левой кнопкой мыши выделить режим, для редактирования, например Тепловая камера. (см. <u>Рисунок 4.21</u>, «Изменение внешнего вида объекта тепловой сети»).

	Структура слоя - teploset.b00 *	
Файл Правка		
🛃 🖹 × Сохранить Новый Удалить	 Сч П Отменить Вернуть Выход Справка 	
🖳 Слой	Тепловая камера - Узел - Типы и режимы	
— 🛨 Символы — Линии	Название: Тепловая камера Образец:	
 Заливки Базы данных Примитивы Гримитивы 	символ: Тепловая камера	
 В Источник Узел Тепловая камера Разветвление Смена диаметра Граница балансовой г 	размер: 100 ≑ цвет: 🗾 Узменить Новый	
 В Потребитель Насосная станция Задвижка Участки Дросселирующий узел ДТП Перемычка Обобщенный потребитель Вспомогательный участон 	 Масштабировать Не увеличивать больше указанного размера Ориентировать при вводе участков Поворачивать на 90° 	

Рисунок 4.21. Изменение внешнего вида объекта тепловой сети

2. Нажать кнопку Изменить. На экране появится редактор символов, (см. <u>Рису-</u> нок 4.22, «Окно редактора символов»).

Рисунок 4.22. Окно редактора символов

- 3. В редакторе символов нарисовать новое изображение объекта;
- 4. Нажать кнопку Сохранить и закрыть редактор;
- 5. При необходимости в строке Размер задать необходимый размер;
- 6. Для сохранения структуры слоя нажать кнопку Сохранить.

4.3.4. Удаление режима

- 1. Выделить удаляемый режим левой кнопкой мыши;
- 2. Нажать кнопку Удалить на панели инструментов.

👔 Примечание

Режим можно удалить только тогда, когда он не занят объектами, т.е. ни в одном слое нет объектов этого режима.

4.3.5. Импорт типов и режимов

В программе имеется возможность импортировать из других слоев структуры отдельных типов с относящимися к этим типам режимами, символами и структурами баз данных.

Для импорта типов надо:

1. В дереве редактора структуры слоя встать на пункт Типы и режимы, нажать кнопку Импортировать типы. (см. <u>Рисунок 4.23</u>, «Импорт типов»).

Рисунок 4.23. Импорт типов

- 2. В появившемся диалоге Импорт типов выбрать слой, из которого будут копироваться типы, для этого надо воспользоваться кнопкой ...;
- 3. В списке типов выбранного слоя отметить типы для импорта, и завершить импорт нажатием кнопки Импорт. (см. <u>Рисунок 4.24</u>, «Выбор типов для импорта»).

	Импорт типов	_
Слой:	Тепловые сети	
	D:\piter\teploseti\teploset.b00	
		Bce
Исто	иник	
Узе	1	
□ Π or p	ебитель	
Hac	осная станция	
🗌 Задя	зижка	
🗌 Учас	тки	
□Дро	сселирующий узел	
□цтп		
Пер	емычка	
060	о́щенный потребитель	
Вспо	могательный участок	
Смо	гровая камера	
🗹 Учас	тки ГВС	
	Импорт	Отмена

Рисунок 4.24. Выбор типов для импорта

👔 Примечание

При копировании структур табличных баз данных на данный момент реализовано создание таблиц только в формате Paradox.

4.3.6. Пример создания режима для уже существующего типа «Узел»

Предположим нам надо добавить новый объект, который будет называться Граница балансовой принадлежности. Для его добавления следует:

- 1. Выделить левой кнопкой мыши в дереве тип Узел, нажать на панели инструментов диалога кнопку **В Новый**... и в выпадающем списке указать Новый режим или выбрать пункт меню Правка Новый режим...;
- 2. В появившейся закладке Режим в строке *Название* ввести название создаваемого режима: **Граница балансовой принадлежности**;
- 3. Нажать кнопку Новый, после чего появится окно Редактор символов, в котором надо создать новый символ для нашего режима. Для этого на панели Редактор симво-

лов следует нажать кнопку 🕒 – ввод многоугольника;

- 4. На панели форматирования задать параметры создаваемого объекта (для контура шш: цвет, узор, толщина, цвет и стиль линии);
- 5. В рабочем поле окна редактора нарисовать символ;
- 6. В строке *Название* ввести пользовательское название символа (Граница балансовой принадлежности);

7. При необходимости изменить точку привязки (центр) символа.

Рисунок 4.25. Создание нового режима

8. Нажать кнопку Сохранить () и закрыть окно редактора. Созданный режим отобразятся в дереве типов и режимов окна Структура слоя.

Рисунок 4.26. Граница балансовой принадлежности

9. Сохранить структуру слоя- кнопка Сохранить 🗔.

4.4. Печать объектов, входящих в структуру слоя

Для печати объектов входящих в структуру слоя надо:

- 1. Выбрать в меню Файл пункт Печать..., после чего на экране появится окно отчета по структуре слоя. В открывшемся окне можно задать настройки для отчета.
- 2. Написать имя заголовка указать параметры шрифта в закладке Заголовок (см. <u>Ри-</u> сунок 4.27, «Отчет по структуре слоя»).

3250 00000	C			грук	пуре о	Юя	
NUBURU ID	Стили	Разм	еры С	трани	ца		
Введите т	екст за	головка	отчета:				
Тепловые	есети						
Парамет	тры шри	іфта					
- Парамет Выбрат	тры шри	іфта Times N	New Rom	ian · 1	2nt 🚍		1
Параме Выбрат	тры шри	іфта Times N	New Rom	1an : 1	2pt.		
– Параме: Выбрат	тры шри	ıфта Times №	New Rom	nan : 1	2pt.		
Параме Выбрат	тры шри	ıфта Times №	New Rom	1an : 1	2pt.		
Параме: Выбра:	тры шри	ιφτa Times Ν	New Rom	1an : 1	2pt.		
Параме Выбрат	тры шри	ıфтa Times N	New Rom	1an : 1	l2pt.		
Парамет	пры шри	ιφτa Times Ν	New Rom	nan : 1	2pt.		

Рисунок 4.27. Отчет по структуре слоя

- 3. В закладке Стили задать стили для печати, выбрать параметры шрифта, и отметить галочками те элементы, которые надо включить в отчет (типы, режимы, базы);
- 4. Установить размеры для объектов, в закладке Размеры;
- 5. Настроить параметры страниц для печати, в закладке Страница;
- 6. Нажать кнопку Просмотр, для предварительного просмотра отчета. Если все настройки устраивают, то нажать кнопку Печать. Для отмены нажать кнопку Отмена.

Глава 5. Ввод объектов сети

Наносить схему тепловой сети можно либо на заранее подготовленную подоснову, либо на чистую карту. При нанесении схемы на можно использовать вспомогательные функции:

- привязка к объектам, сетка редактора;
- ортогональный ввод;
- ввод точек по координатам,

Примечание

Подробное описание данных функций смотрите в руководстве пользователя ГИС Zulu. Видеоурок по изображению тепловой сети можно посмотреть по следующей ссылке: <u>http://politerm.com.ru/video-tutorials/</u> LayerTeploVektorize.htm

После нанесения сети или для готовых ее участков можно провести операции контроля ошибок ввода. Подробнее о проверке ошибок ввода <u>Раздел 6.3, «Контроль ошибок при вводе»</u>.

5.1. Включение режима редактирования слоя

Перед нанесением схемы тепловой сети необходимо сначала включить режим редактирования слоя. В этом режиме происходит ввод и редактирование объектов сети.

Для включения режима редактирования следует:

Первый способ:

- Выбрать пункт главного меню Карта|Редактор слоя или нажать кнопку и на панели инструментов;
- 2. Если карта содержит только один слой, то этот слой сразу станет редактируемым. Если же в карте несколько слоев, то на экране появится список слоев карты (см. <u>Рисунок 5.1, «Выбор слоя для редактирования»</u>), в котором нужно левой кнопкой мыши выбрать слой с тепловой сетью и нажать кнопку ОК.

Кварталы	💣 🕕 💯 😰 🛛 <u>Н</u> азад
Здания	ď 🚯 💯 💇 🔤
Надписи	🐼 🕕 🍠 💆 <u>В</u> перед
Пример тепловой сети	df 💽 🥙 🗐Добавить
	Исключить
	Настройка
	Структура
	Клавиша
	ОК
	Отмена
	Справка

Рисунок 5.1. Выбор слоя для редактирования

Второй способ включения редактирование слоя:

Нажать кнопку с карандашиком напротив имени слоя в окошке активного слоя

Кнопка примет утопленное состояние Пример тепловой сети включения редактора слоя в строке состояния внизу экрана отобразится имя редактируемого слоя Правка: Пример тепловой сети

5.2. Последовательность действий при вводе

Для изображения сети можно пользоваться двумя способами:

- Если известны координаты узловых объектов, таких как тепловые камеры, источники и т.д., то можно сначала расставить эти объекты на карте и затем соединить их участками; <u>Раздел 5.2.1, «Ввод узловых объектов сети»</u>.
- Изображать сеть с помощью объекта Участок. В этом случае при вводе участка редактор сам будет запрашивать узловые объекты в начале и в конце участка, а поскольку часто начало нового участка является концом предыдущего, то начальный узел нового участка уже существует, и за него нужно только зацепится, то есть, продолжая ввод участка, нажать на узле левой клавишей мыши; Раздел 5.2.2, «Ввод тепловой сети с помощью участка»

Примечание

Используя для рисования режим Участка, требуется гораздо меньше действий из-за того, что не приходиться постоянно выбирать объект для ввода. Используя один лишь режим участка, изображаются все элементы сети.

Далее приведены примеры изображения тепловой сети этими двумя способами. Например, нужно ввести фрагмент сети *Источник->Камера->Насос->Потребитель*.

5.2.1. Ввод узловых объектов сети

Если использовать второй способ, то последовательность действий должна быть следующей:

- Включить режим редактирования слоя ♥
- 2. Нажать кнопку выбор типа ¹ и в выпадающем списке выбрать режим источника Работа (т.е. включен), см. <u>Рисунок 5.2</u>, «Выбор режима источника».

🞧 Zulu 7.0 - [Карта1 *]	
: 🕑 <u>Ф</u> айл <u>П</u> равка С <u>л</u> ой <u>К</u> арта <u>В</u> ид	<u>Р</u> астр <u>Т</u> аблица <u>З</u> адачи С <u>е</u> рвис <u>О</u> к
🗄 🗋 🚰 • 🔙 🎒 💁 🕰 🗎 🐇 🛍 🛍	× ッペ 🚰 🗊 = 🛨 📑 🚥 🗉
🗄 💕 👻 🚰 🥙 🗐 🔛 🔤 Тепловая сет	ь 🖉 - 🗸 🖓 🐂
	А~ Примитивы
	Источник
	🚡 Работа
®	Стключен
<u>B</u>	
2	узел
23	Гепловая камера
•	Разветвление
- m	📂 Смена диаметра
2	
×m	Потребитель
12	💛 Работа
*	Отключен
R	Насосная станция

Рисунок 5.2. Выбор режима источника

3. Щелкнуть в том месте карты, где будет установлен источник.

Рисунок 5.3. Ввод источника

- 4. Нажать кнопку выбор типа ¹ и в выпадающем списке выбрать режим узла Тепловая камера;
- 5. Щелкнуть в том месте карты, где будет камера, см. <u>Рисунок 5.4, «Ввод камеры»</u>.

Рисунок 5.4. Ввод камеры

- 6. Нажать кнопку выбор типа 💭 и в выпадающем списке выбрать режим насосной станции Работа(т.е. включена);
- 7. Щелкнуть в том месте карты, где будет изображена насосная станция, см. <u>Рису-</u> нок 5.5, «Ввод насосной станции»

Рисунок 5.5. Ввод насосной станции

- 8. Нажать кнопку выбор типа 😨 и в выпадающем списке выбрать режим потребителя Включен;
- 9. Щелкнуть в том месте карты, где будет потребитель.

Рисунок 5.6. Ввод потребителя

- 10. Нажать кнопку выбор типа Включен(т.е. открыты оба трубопровода);
- 11.Щелкнуть левой кнопкой мыши по источнику, «зацепившись» за него;
- 12. Сделать двойной щелчок по тепловой камере для соединения её с источником;
- 13.Аналогичным образом соединить оставшиеся элементы, см. <u>Рисунок 5.7, «Ввод оставшихся элементов»</u>.

Рисунок 5.7. Ввод оставшихся элементов

Предупреждение

Устанавливать таким образом объекты на уже нарисованные участки сети нельзя. Их следует вставлять объекты только в режиме Узлы р .

5.2.2. Ввод тепловой сети с помощью участка

Геометрически участок представляет собой ломаную линию. Любая ломаная имеет как минимум две вершины — начало и конец участка. Вершины ломаной между началом и концом участка называются точки перелома, с помощью которых обозначают повороты участка, компенсаторы. На участке может быть неограниченное количество точек перелома. При рисовании участка возможны все вспомогательные функции, что и при изображении ломаной линии. (см. подробнее в руководстве по ГИС Zulu).

Рисунок 5.8. Изображения участка сети

Участок должен обязательно начинаться и заканчиваться узловым объектом. Например, оба участка на <u>Рисунок 5.8, «Изображения участка сети»</u> начинаются тепловой камерой и заканчиваются потребителем. Подробнее об участке можно прочитать в разделе <u>Раздел 2.3, «Участок»</u>

Для ввода участка тепловой сети надо выполнить следующие действия:

1. Нажать кнопку выбор типа ¹/₂ и выбрать объект для ввода (например, режим участка Включен).

(i) Примечание

При необходимости вновь вводить ранее выбранный режим работы участка

достаточно нажать кнопку — на панели инструментов (если она еще не нажата). Кнопка примет утопленное положение, и редактор перейдет в режим ввода линейных объектов.

2. В начале участка обязательно должен присутствовать символьный объект. Если начальный объект участка уже установлен на карте, то участок надо к нему присоединить. Для этого нужно подвести курсор мыши к центру объекта и нажать левую клавишу мыши. При этом, если присоединение к узлу прошло успешно, то первая точка участка будет зафиксирована, и можно продолжить ввод остальных точек участка.

Примечание

Никакого всплывающего окна при этом появляться не должно. Всплывающее окно означает что: а) привязки к объекту не произошло b) попытка при-

вязаться туда, где нет узлового объекта. Для закрытия открывшегося окна следует сделать щелчок левой кнопкой мыши по карте или нажать клавишу Esc. В этих случаях надо повторить попытку привязаться к объекту, либо внедрить объект на существующий участок.

Если начального символьного объекта участка еще нет, то участок можно начинать в произвольной точке. Для этого нужно подвести курсор мыши в точку карты, соответствующую будущему началу участка, и нажать левую клавишу мыши. После этого редактор попросит указать тип начального узла. На экране появится список типов и режимов узловых объектов редактируемого слоя. Из этого списка нужно выбрать узел, в котором будет начинаться участок (например, источник или тепловая камера.) Таким образом, начиная участок в произвольной точке, мы попутно добавляем в сеть и новый узел;

- 3. После того как задана начальная точка участка, можно продолжить его ввод, последовательно задавая точки поворота. Для этого надо подвести курсор мыши к точке на карте, соответствующей очередной точке поворота, и зафиксировать ее нажатием левой клавиши мыши. После того как точки поворота введены, или при отсутствии их у данного участка, можно завершать ввод трубопровода;
- 4. В конце участка обязательно должен быть узловой объект. Если конечный объект уже имеется на карте, то надо подвести курсор к центру такого объекта и дважды щелкнуть левой клавишей мыши. Никакого всплывающего окна при этом, не должно появиться. Если захват узла прошел успешно, то ввод участка будет завершен.

Если конечного символьного объекта участка еще нет, то участок можно закончить в произвольной точке. Для этого нужно подвести курсор мыши в точку карты, соответствующую будущему концу участка, и дважды щелкнуть левой клавишей мыши. После этого редактор попросит указать тип конечного узла. На экране появится список объектов слоя с учетом их возможных режимов работы. Из этого списка нужно выбрать объект, в котором будет заканчиваться участок (например, потребитель, тепловая камера и т.д.) Таким образом, завершая участок в произвольной точке, мы попутно добавляем в сеть и новый узел.

🚺 Важно

Во время завершающего ввод двойного щелчка левой клавишей мыши, важно, чтобы сама мышь между щелчками оставалась неподвижной, т.е щелчки надо сделать быстро. В противном случае будет установлена точка перелома участка. Также можно сделать щелчок правой кнопкой мыши и выбрать из меню Завершить объект, для завершения объекта в последней точке перелома.

5.2.2.1. Ввод точек перелома (поворота) участка

Для ввода точек перелома участка во время изображения участка следует:

- 1. Подвести курсор к месту на карте, где будет установлена точка перелома (например, поворот);
- 2. Щелкнуть левой кнопкой мыши для установки точки перелома и можно дальше продолжать ввод. см. <u>Рисунок 5.9, «Изображение точек перелома»</u>

Рисунок 5.9. Изображение точек перелома

5.2.2.2. Отмена введенных точек

Если во время нанесения участка на карту, последняя из введенных точек была введена ошибочно, то ее можно отменить нажатием клавиши Esc или щелкнув правой кнопкой мыши, выбрать в открывшемся окошке Отменить последнюю точку Esc.

Повторяя это действие, можно шаг за шагом отменить несколько последних введенных точек, или вообще все точки, включая начало участка.

5.2.2.3. Ввод за пределами экрана

Если местоположение очередной вводимой точки выходит за пределы окна карты на экране, то изображение нужно сперва передвинуть так, чтобы место установки точки попало в окно карты. Переместить изображение, не выходя из режима ввода участка, можно нескольким способами:

- 1. Использовать кнопки вертикальной и горизонтальной полосы прокрутки карты;
- 2. При установке предыдущей точки перелома, т.е. нажатии левой клавиши мыши, не отпускать эту клавишу, и в таком состоянии переместить мышь за пределы окна карты в сторону где должна быть установлена очередная точка. При этом изображение карты начнет прокручиваться в заданном направлении. Прокрутив карту на нужное расстояние, завершите прокрутку, отпустив левую клавишу мыши и продолжайте ввод участка;
- 3. Если у мыши имеется средняя клавиша (или средняя клавиша с колесиком), то можно перемещать карту мышкой, удерживая среднюю клавишу в нажатом состоянии,

при этом курсор мыши изменит свой вид и будет выглядеть как рука 🖑. Для завершения перемещения нужно среднюю клавишу отпустить.

5.2.2.4. Отмена ввода объектов

Если участок был завершен и, оказалось, что он введен ошибочно, то последний вве-

денный участок можно отменить нажатием кнопки 🧖. Повторяя эту операцию можно отменить несколько последних действий редактора.

Если отмена последних действий редактора была ошибочна, то их можно восстановить нажатиями кнопки .

(ј) Примечание

При выключении режима редактирования слоя (¹²⁷) использование данных кнопок становится невозможным.

Глава 6. Редактирование сети

В данном разделе рассмотрены варианты редактирования (удалить, переместить, изменить режим работы объектов), которые могут применяться непосредственно к объектам тепловой сети. Об остальных операциях редактирования можно узнать в справке по ГИС Zulu.

Внешний вид любого введенного или еще не введенного объекта тепловой сети может быть изменен. Изображения объектов сети меняются в окне редактора структуры слоя (для дополнительных сведений о редакторе структуры слоя <u>Глава 4, *Структура слоя*</u>). Все изменения относятся сразу ко всем объектам в слое тепловой сети.

(i) Примечание

Для того чтобы отредактировать сеть необходимо, чтобы был включен режим редактирования слоя (). Как включить режим редактирования слоя <u>Раздел 5.1, «Включение режима редактирования слоя»</u>.

6.1. Редактирование одиночных объектов

В режиме редактирования одиночных объектов выполняются операции, относящиеся к объекту (узлу или участку сети) целиком:

- <u>Раздел 6.1.1, «Перемещение объекта»</u>
- Раздел 6.1.2, «Поворот символьного объекта»
- Раздел 6.1.3, «Дублирование одиночного объекта»
- <u>Раздел 6.1.4, «Смена типа или режима объекта»</u>
- Раздел 6.1.5, «Смена направления участка тепловой сети»
- Раздел 6.1.6, «Удаление объекта»
- Раздел 6.2.6, «Разбиение участка на два узловым объектом (Ввод объекта на существующую сеть)»
- <u>Раздел 6.2.7</u>, «Объединение последовательно соединенных участков (Удаление объекта с нанесенной сети)»

6.1.1. Перемещение объекта

Переместить объект можно двумя способами: с сохранением топологических связей или с отрывом объекта от сети. В первом случае изменяется только местоположение объекта, а связность объектов сети не нарушается, т.е. топология сети не изменяется. Во втором случае нарушается связь перемещаемого объекта с сетью, поэтому такое перемещение объекта, как правило, используется как промежуточная операция.

Для перемещения объекта с сохранением связей нужно:

- Выбрать стрелку Объект, нажав кнопку ▶ панели инструментов;
- 2. Установить курсор на перемещаемый объект (символ или участок);
- 3. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение (см. <u>Рису-</u> нок 6.1, «Перемещение объекта с сохранением связи» b).

Рисунок 6.1. Перемещение объекта с сохранением связи

- 4. Переместить объект в новое положение;
- 5. Отпустить левую клавишу мыши, для завершения перемещения (см. <u>Рисунок 6.1</u>, <u>«Перемещение объекта с сохранением связи»</u>с).

В результате видно, что объект переместился с сохранением топологической связи.

Для перемещения объекта с отрывом от сети нужно:

- 1. Выбрать стрелку Объект, нажав кнопку 🕨 на панели инструментов;
- 2. Установить курсор на перемещаемый объект (символ или участок);
- 3. Нажать и не отпускать клавишу Shift;
- 4. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение. (см. <u>Рису-</u> нок 6.2, «Перемещение объекта с отрывом от сети» b). После начала перемещения клавишу Shift можно отпустить.

Рисунок 6.2. Перемещение объекта с отрывом от сети

- 5. Переместить объект в новое положение;
- 6. Отпустить левую клавишу мыши, для завершения перемещения. (см. <u>Рисунок 6.2</u>, <u>«Перемещение объекта с отрывом от сети»</u>с).

Примечание

Эта операция используется как промежуточная (например, для внедрения другого объекта вместо убранного.

В результате объект был перемещен, при этом топологическая связь участков с этим объектом нарушилась.

6.1.2. Поворот символьного объекта

Поворот символа узлового объекта не изменяет местоположение объекта ни тем более топологию сети. Просто иногда возникает необходимость повернуть символ, под определенным углом для улучшения наглядности и читаемости изображения сети.

Для поворота символа нужно:

- Выбрать стрелку Объект, нажав кнопку ► на панели инструментов;
- 2. Выделить определенный символьный объект. Для этого нужно установить на него курсор и нажать левую клавишу мыши. Символ выделится прямоугольной областью с небольшим кружком в одном из ее углов. (см. <u>Рисунок 6.3, «Поворот узлового объекта»</u> b).

Рисунок 6.3. Поворот узлового объекта

- 3. Подвести курсор к кружку в углу выделенной области и нажать, не отпуская, левую клавишу мыши;
- 4. Перемещая мышь, поворачивайте символ до нужного угла. (см. <u>Рисунок 6.3, «По-ворот узлового объекта»</u>с);
- 5. Отпустить левую клавишу мыши, для завершения поворота. (см. <u>Рисунок 6.3, «Поворот узлового объекта»</u>d).

6.1.3. Дублирование одиночного объекта

Дублирование объекта является одним из способов создания нового объекта. В качестве исходного отмечается один из существующих объектов слоя, и на указанном месте создается новый объект с тем же типом, режимом и той же формы, что и исходный. Действия при дублировании объекта почти полностью совпадают с перемещением объекта с отрывом от сети.

Для дублирования объекта нужно:

- 1. Выбрать стрелку Объект, нажав кнопку 🕨 на панели инструментов;
- 2. Установить курсор на исходный объект;

3. Нажать левую клавишу мыши и, не отпуская ее, начать перемещение.

Переместить объект в новое положение. Не отпуская кнопку мыши, нажать клавишу Ctrl, рядом с курсором появится 🗄.

Отпустить левую кнопку мыши. После этого клавишу Ctrl можно отпустить. Исходный объект будет продублирован в новое место.

6.1.4. Смена типа или режима объекта

Часто возникает необходимость изменить один объект сети на другой, или изменить режим его работы. Например, превратить узел в тепловую камеру или сменить режим участка на Отключен. Если выделена группа объектов то смена режима произойдет для всей группы.

Для смены типа/режима объекта нужно:

- 1. Выбрать стрелку Объект, нажав кнопку 🕨 на панели инструментов;
- 2. Установить курсор на определенный объект и дважды щелкнуть левой клавишей мыши. На экране появится диалог Смена режима (см. <u>Рисунок 6.4, «Смена режима</u> для узлового объекта»).

	Смена режима	? ×
Тип:		
Источник Узел Потребитель Насосная станция		
задвижка Дросселирующий узел ЦТП Перемычка Обобщенный потребитель		
Режим:		
Закрыта		OK
		Отмена
		Справка

Рисунок 6.4. Смена режима для узлового объекта

- 3. В верхней части окна выбрать тип объекта. Например, Задвижка;
- 4. Выбрать режим для объекта в нижней части окна. Например, Закрыта;
- 5. Нажать кнопку ОК для сохранения изменений и выхода. Для отказа от изменений нажать кнопку Отмена.

👔 Примечание

Кнопка Сменить направление появляется только если изменяемый объект- участок. Нажатие кнопки изменяет направление участка на противоположное.

6.1.5. Смена направления участка тепловой сети

Для смены направления участка следует:

- Выбрать стрелку Объект, нажав кнопку
 на панели инструментов;
- 2. Установить курсор на определенный участок и дважды щелкнуть левой клавишей мыши. На экране появится диалог Смена режима (см. <u>Рисунок 6.5, «Смена режима</u> для участка»).

	Смена режима	?	×
Гип:			
Ччастки			
Вспомогательный участок		$\overline{\ }$	
		Сменить направлен	ие
ежим:			
Включен			
Отключен Отключ. обратный тр-д		OK	
Отключ. подающий тр-д		Отмена	
		Справка	

Рисунок 6.5. Смена режима для участка

- 3. Установить опцию Сменить направление, что поменяет направление участка на противоположное.
- 4. Нажать кнопку ОК. Для отказа от изменений нажать кнопку Отмена.

6.1.6. Удаление объекта

Для удаления объекта нужно:

- 1. Выбрать стрелку Объект, нажав кнопку 🕨 панели инструментов;
- 2. Отметить удаляемый объект. Для этого нужно установить на него курсор и нажать левую клавишу мыши. Отмеченный объект изменит цвет;
- 3. Нажать клавишу Del на клавиатуре или кнопку 🗙 панели инструментов. Также можно сделать щелчок правой кнопкой мыши и выбрать Удалить.

Выделенный объект удалится.

6.2. Редактирование элементов объекта

Под редактированием элементов объекта подразумеваются операции с участием отдельных элементов участков, таких как отрезки и точки перелома:

- Раздел 6.2.1, «Перемещение узла»
- Раздел 6.2.2, «Перемещение отрезка»
- Раздел 6.2.3, «Добавление точки перелома»
- Раздел 6.2.4, «Удаление точки перелома»
- Раздел 6.2.5, «Перепривязка участка»

6.2.1. Перемещение узла

Любой уже нанесенный на карту узел можно переместить. Для того, чтобы перенести узел нужно:

- 1. Выбрать стрелку Узлы, нажав кнопку 🍾 на панели инструментов;
- 2. Подвести курсор к узлу и нажать левую клавишу мыши. (см. <u>Рисунок 6.6, «Перемещение узла»</u> b).

Рисунок 6.6. Перемещение узла

- 3. Не отпуская клавишу переместить узел на нужное место (см. <u>Рисунок 6.6</u>, «<u>Перемещение узла</u>»с);
- 4. Отпустить клавишу мыши для окончания перемещения узла. (см. <u>Рисунок 6.6, «Перемещение узла»</u>d);
- 5. Точно таким же образом можно перенести любой символьный объект, только при выполнении пункта 2 надо обязательно попасть в точку привязки объекта (как правило это центр объекта).

6.2.2. Перемещение отрезка

Любой нанесенный отрезок, участок сети можно перенести с одного места на другое. Для переноса отрезка надо:

- Выбрать стрелку Узлы, нажав кнопку на панели инструментов;
- 2. Для переноса отрезка вместе со связанными с ним объектами подвести курсор к отрезку и нажать левую клавишу мыши, не отпуская клавишу переместить отрезок на нужное место (см. <u>Рисунок 6.7</u>, «Перемещение отрезка»b);
- 3. Отпустить клавишу мыши для окончания перемещения отрезка (см. <u>Рисунок 6.7</u>, <u>«Перемещение отрезка»</u>с).

Рисунок 6.7. Перемещение отрезка

6.2.3. Добавление точки перелома

На любом нанесенном участке сети можно создать перелом двумя способами. Для создания точки перелома первым способом необходимо:

- 1. Выбрать стрелку Узлы, нажав кнопку 🍗 панели инструментов;
- 2. Отметить точку разбиения на участке. Подвести курсор к предполагаемой точке перелома и нажать левую клавишу мыши. Место перелома на отрезке отобразится кружком (см. Рисунок 6.8, «Добавление точки перелома»а);
- 3. Нажать кнопку ➡ на панели инструментов или щёлкнуть правой кнопкой мыши и выбрать Добавить точку перелома. На участке появится точка перелома (см. <u>Рисунок 6.8</u>, «Добавление точки перелома»b).

Второй способ создания точки перелома:

- 1. Выбрать стрелку Узлы, нажав кнопку 🍗 панели инструментов;
- 2. Подвести курсор к предполагаемой точке перелома и, удерживая клавишу Ctrl, нажать левую клавишу мыши (см. <u>Рисунок 6.8</u>, «<u>Добавление точки перелома</u>» b.

Рисунок 6.8. Добавление точки перелома

3. Была создана новая точка перелома на участке, после чего при необходимости участок сети можно изогнуть (<u>Рисунок 6.8</u>, «Добавление точки перелома»с).

6.2.4. Удаление точки перелома

Ошибочно введенный или лишний узел на участке можно удалить, либо указывая удаляемую точку на карте, либо указывая ее в панели свойств. Для удаления точки перелома первым способом нужно:

- ¹. Выбрать стрелку Узлы, нажав кнопку 🏲 панели инструментов;
- Отметить удаляемый узел, для этого подвести курсор к удаляемому узлу и нажать левую клавишу мыши. Отмеченный узел будет выделен квадратом черного цвета (см. <u>Рисунок 6.9, «Удаление точки перелома»</u>b);
- 3. Нажать кнопку панели инструментов или клавишу Delete клавиатуры, либо щелкнуть правой кнопкой мыши и выбрать Удалить точку перелома. Точка перелома будет удалена и участок автоматически выпрямится. (см. <u>Рисунок 6.9, «Удаление точки перелома»</u>с).

Рисунок 6.9. Удаление точки перелома

Возможен второй способ удаления точки перелома:

- 1. Нажать кнопку Панель свойств 🔄. В правой части экрана появится окно Свойства;
- 2. Выбрать стрелку Узлы, нажав кнопку 🕨 панели инструментов;
- Подвести курсор к участку, на котором находится удаляемая точка, и нажать левую клавишу мыши, в окне свойств отобразятся параметры участка: координаты начальной, конечной и промежуточных точек, длина и азимут промежуточных отрезков;
- 4. Перемещаясь в окне свойств, точки соответствующие строке, на которой находится курсор, будут выделяться черным квадратом;
- 5. Поставить курсор на строку, характеризующую удаляемую точку и нажать на клавиатуре комбинацию клавиш Ctrl+Delete. (см. <u>Рисунок 6.10, «Удаление точки перелома из Панели свойств»</u>b);
- 6. Выделенная точка и строка, соответствующая ей удалится, а отрезок выпрямится (см. <u>Рисунок 6.10</u>, «Удаление точки перелома из Панели свойств»с).

Рисунок 6.10. Удаление точки перелома из Панели свойств

6.2.5. Перепривязка участка

Для перепривязки участка от одного объекта к другому необходимо:

- 1. Выбрать стрелку Узлы, нажав кнопку 🆒 панели инструментов;
- Отметить щелчком перепривязываемый участок, щелкнув по нему левой кнопкой мыши. На отмеченном участке будет отмечены точки перелома (см. <u>Рисунок 6.11</u>, <u>«Перепривязка участка»</u>а);
- 3. Подвести курсор к узлу участка, который необходимо «оторвать» от сети и удерживая клавишу Shift на клавиатуре нажать левую клавишу мыши.

Примечание

Клавиша Shift в данном случае используется для того, чтобы «оторвать» участок от объекта.

Рисунок 6.11. Перепривязка участка

- 4. Удерживая левую клавишу мыши и Shift отвести участок в сторону (см. <u>Рису-</u> нок 6.11, «Перепривязка участка» b). Таким образом, мы отцепили участок от объекта;
- 5. Щелчком левой кнопкой мыши «ухватиться» за конечную точку участка. Не отпуская клавишу мыши и удерживая клавишу Ctrl на клавиатуре подвести конец участ-

ка к узлу привязки, при этом вид курсора изменится на следующий ^С (см. <u>Рису-</u>нок 6.11, «Перепривязка участка»с);

6. Отпустить клавишу мыши для окончания перепривязки участка (см. <u>Рисунок 6.11</u>, <u>«Перепривязка участка»</u>d).

Примечание

Клавиша Ctrl в данном случае используется для того, чтобы участок «прицепился» к объекту.

6.2.6. Разбиение участка на два узловым объектом (Ввод объекта на существующую сеть)

Всегда возникает необходимость вставить объект на уже введенный участок сети. Сделать это можно в любой точке участка, кроме начала и конца. При вставке объекта на существующий участок, этот участок разбивается на два участка: один перед объектом, другой после.

Для разбиения участка нужно:

- 1. Выбрать стрелку Узлы, нажав кнопку 🍗 панели инструментов;
- 2. Отметить точку вставки на участке, для этого подвести курсор к предполагаемой точке разбиения и нажать левую клавишу мыши. Место на отрезке отобразится кружком, в точке перелома- квадратиком (см. <u>Рисунок 6.12</u>, <u>«Вставка объекта на существующую сеть»</u>b);
- 3. Нажать кнопку [№] на панели инструментов или щёлкнув правой кнопкой мыши выбрать Вставить символьный объект. Откроется всплывающее окошко объектов редактируемого слоя;
- 4. Из списка объектов выбрать нужный и нажать левую клавишу мыши. Выбранный объект будет изображен на схеме. (см. <u>Рисунок 6.12, «Вставка объекта на существующую сеть»</u> с).

Рисунок 6.12. Вставка объекта на существующую сеть

6.2.7. Объединение последовательно соединенных участков (Удаление объекта с нанесенной сети)

Если на сети установлен объект, который связан только с двумя участками (<u>Рисунок 6.13, «Удаление объекта с нанесенной сети»</u>), то его можно удалить, таким образом, что два связанных с ним участка объединятся в один, а на месте удаленного узла будет точка перелома объединенного участка. В отличие от простого удаления объекта (через Del) при котором нарушается связанность, в этом случае, несмотря на изменение топологии (сеть уменьшается на один узел и одно ребро), связность сети не нарушается, т.к. происходит объединение участков.

Для объединения участков с общим узлом нужно:

- 1. Выбрать стрелку Узлы, нажав кнопку 🕨 панели инструментов;
- 2. Отметить удаляемый узел. Подвести курсор к узловому объекту и нажать левую клавишу мыши (см. <u>Рисунок 6.13</u>, «Удаление объекта с нанесенной сети» b).

Рисунок 6.13. Удаление объекта с нанесенной сети

3. Нажать кнопку **Т** на панели инструментов либо щёлкнуть правой кнопкой мыши и выбрать Исключить символьный объект. (см. <u>Рисунок 6.13, «Удаление объекта с</u> <u>нанесенной сети»</u>с).

👔 Примечание

Если число связей отмеченного узла отлично от двух, ничего не произойдет. В противном случае узел удалится, и два участка превратятся в один.

6.3. Контроль ошибок при вводе

Для проверки правильности нанесения схемы тепловой сети необходимо произвести проверку ее связности, для определения все ли узлы и участки связаны между собой. Проверку можно производить как для полностью нанесенной сети, так и для готовых ее частей.

Для проверки:

- 1. Сделать активным слой тепловой сети;
- 2. На панели навигации нажмите кнопку Поиск пути ኛ;
- Левой кнопкой мыши установить флажок на любом объекте тепловой сети (кроме участков);
- 4. Нажмите правую кнопку мыши и в появившемся меню (<u>Рисунок 6.14, «Поиск связанных объектов»</u>) выберите пункт Найти связанные. Все найденные объекты сети, в соответствии с выбранным пунктом меню поиска, окрасятся в красный цвет;

5. Для отмены результатов поиска нажмите кнопку Отмена пути 家.

Рисунок 6.14. Поиск связанных объектов

Можно найти все связанные объекты сети по направлению от узла, на котором был установлен флажок, или против направления, для этого в меню выберите пункт Найти связанные по направлению или Найти связанные против направления.

Следует учитывать, что направление участка определяется при его вводе, то есть направление участка будет от начальной точки ввода к конечной точке. Также можно найти несвязанные объекты (пункт Найти несвязанные).

Глава 7. Исходные данные для выполнения инженерных расчетов

7.1. Введение

Прежде чем приступить к любому инженерному расчету, необходимо занести исходные данные. В зависимости от вида проводимого расчета, потребуется занести дополнительные данные к уже введенным, например, для расчета с учетом тепловых потерь или для конструкторского расчета.

Рекомендации по занесению исходных данных:

- Рекомендуется сначала внести исходные данные для узловых объектов сети, таких как источник, тепловые камеры, потребители и т. д., а затем уже по участкам трубопроводов тепловой сети;
- Для всех объектов сети, кроме участков трубопроводов, рекомендуется заполнить поле *Name*, *Наименование* объекта (узла), так как информация из данного поля дает наглядность при построении пьезометрических графиков и их распечатке;
- Наименования начал и концов участков трубопроводов сети можно записать автоматически, при наличии наименований объектов сети, подробнее <u>Раздел 19.2, «Ав-</u> томатическое занесение начала и конца участков»;
- При изображении сети на карте (в масштабе) можно считать длину участков с карты, подробнее <u>Раздел 19.1</u>, «Автоматическое занесение длины с карты»;
- Прежде чем приступить к расчету с учетом тепловых потерь и утечек, рекомендуется провести расчет без их учета.

Для всех объектов тепловой сети (кроме участков) необходимо задать значение *H_geo*, *Геодезическая* отметка, м. Если геодезические отметки неизвестны, то можно принять местность плоской, задав на всех объектах геодезическую отметку равную нулю. Геодезическая отметка также может быть считана со слоя рельефа, подробнее об этом <u>Раздел 19.3</u>, «Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»

(i) Примечание

При занесении исходных данных по объектам также можно воспользоваться сводными таблицами: <u>Глава 24</u>, *Таблицы баз данных элементов тепловой сети*

7.2. Основные исходные данные для выполнения наладочного и поверочного расчетов

- <u>Раздел 7.2.1, «Источник»</u>
- Раздел 7.2.2, «Потребитель»
- Раздел 7.2.3, «Центральный тепловой пункт (ЦТП)»
- Раздел 7.2.4, «Обобщенный потребитель»
- Раздел 7.2.5, «Запорная арматура»
- Раздел 7.2.6, «Участок тепловой сети»
- Раздел 7.2.7, «Насосная станция»
- <u>Раздел 7.2.8, «Вычисляемая дроссельная шайба»</u>
- <u>Раздел 7.2.9</u>, «Устанавливаемая дроссельная шайба»
- Раздел 7.2.10, «Регулятор давления»
- <u>Раздел 7.2.11, «Регулятор располагаемого напора»</u>
- Раздел 7.2.12, «Регулятор расхода»
- Раздел 7.2.13, «Локальное сопротивление»

7.2.1. Источник

Для выполнения наладочного расчета надо занести следующую информацию по источнику тепловой сети:

- 1. Nist, Номер источника Задается цифрой, например 1, 2, 3 и т.д., по количеству котельных на предприятии. После выполнения расчетов присвоенный номер источника будет прописан у всех объектов, которые будут запитаны от данного источника;
- 2. *H_geo*, *Геодезическая* отметка, *м*-Задается отметка оси (верха) трубы, выходящей из данного источника. Она может автоматически быть считана со слоя рельефа (Раздел 19.3, «Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»).
- 3. *T1_r*, *Расчетная температура в подающем трубопроводе*, °*C*-задается расчетное значение температуры сетевой воды в подающем трубопроводе, на которое было выполнено проектирование системы централизованного теплоснабжения, например 150, 130, или 95°C. Максимальное значение 250°C;

- 4. *Thz_r*, *Pacчетная температура холодной воды*, °*C*-Задается расчетная температура холодной водопроводной воды, например 5, 15 °C. Максимальное значение 20°C. Минимальное значение 1°C;
- 5. *Tnv_r*, *Расчетная температура наружного воздуха*, °С Задается расчетное значение температуры наружного воздуха, (например –25, –30, –50 и т.д. °С), которое принимается в соответствии со СНиП. Минимальное значение –60°С;
- 6. *H_ras*, *Расчетный располагаемый напор на выходе из источника*, *м* – Задается расчетный располагаемый напор на выходе из источника (разность между давлением в подающем и давлением в обратном трубопроводах), например 30, 40, 70, 100 м. При выполнении наладки расчетный располагаемый напор на выходе из источника можно задать заведомо очень маленьким 5-10 м, в этом случае располагаемый напор на источнике будет подобран автоматически. Максимальное значение 250 м. Минимальное значение 1м;
- 7. Н_оbr, Расчетный напор в обратном трубопроводе на источнике, м- задается расчетное значение напора в обратном трубопроводе на источнике, например 20, 50, 100 и т.д. метров. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения источника, например если геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, то расчетный напор в обратном трубопроводе на источнике равен 50 + 20 = 70 метров. Минимальное значение 0м;
- 8. *Mode*, *Режим* работы источника если в сети несколько источников, то указывается режим работы источника, для этого следует выбрать соответствующую строку, нажать кнопку ▼ и в открывшемся меню выбрать необходимое наименование режима работы.

Источник		_ 🗆 🔺 X
🔡 M 🔺 🕨 H 😳 🛃 🔸 - 🕒 🗹 🖆 🚺 🔡	á 🕈 ք	
Текущая запись Запрос База Ответ		Þ
Наименование предприятия		
Наименование источника		
Номер источника		
Геодезическая отметка, м		=
Расчетная температура в подающем трубопроводе,*С		
Расчетная температура холодной воды, °С		
Расчетная температура наружного воздуха, *С		
Расчетный располаг. напор на выходе из источника, м		
Расчетный напор в обратн. тр-де на источнике, м		
Режим работы источника		
Максимальный расход на подпитку, т/ч	Выделенный источник.	3
Установленная тепловая мощность, Гкал	Подпитка неограничена	
Текущий располаг. напор на выходе из источника, м	Подпитка ограничена заданным значением	
Напор в подающем тр-де, м	Подпитки нет, фиксирован располагаемый напор	
Давление в подающем тр-де, м		-

Рисунок 7.1. Режимы работы источника

Режимы работы источника

Выделенный источник

Источник будет определяющим при работе на сеть. В этом случае данный источник будет характеризоваться расчетным располагаемым напором, расчетным напором в обратном трубопроводе и максимальной подпиткой сети, которую он может обеспечить.

Подпитки нет, фиксирован рас- полагаемый напор	Источник не имеет своей подпитки, располага- емый напор на этом источнике поддерживает- ся постоянным, а напор в обратном трубопро- воде зависит от режима работы сети и опреде- ляющего источника.
Подпитки нет, фиксировано дав- ление в обратнике	Источник не имеет своей подпитки, но поддер- живает напор в обратном трубопроводе на за- данном уровне, при этом располагаемый напор меняется в зависимости от режима работы сети и определяющего источника.
Подпитка неограничена	Источник, с заданным расчетным располагае- мым напором и расчетным напором в обратном трубопроводе, имеющий неограниченную под- питку.
Подпитка ограничена заданным значением	Источник, имеющий фиксированную подпит- ку с заданным расчетным располагаемым напо- ром. Напор в обратном трубопроводе на источ- нике будет зависеть от величины этой подпит- ки, режима работы системы и соседних источ- ников, включенных в сеть. В поле Максималь- ный расход на подпитку, следует указать фик- сированную величину подпитки

9. Glimit, Максимальный расход на подпитку, т/ч-Используется только в том случае, когда режим работы источника Подпитка ограничена заданным значением. Задается максимальный расход воды на подпитку, например 20, 40т/ч.

Для выполнения поверочного расчета нужно дополнительно занести следующую информацию:

- 1. *T1_t*, *Текущая температура воды в подающем тру-де*, °*С*-Задается текущая температура воды в подающем трубопроводе (на выходе из источника), например 80,70°С и т.д. Данное значение должно обязательно задаваться при выполнении поверочного расчета;
- 2. *Tnv_t*, *Текущая температура наружного воздуха*, °*C*-Задается текущая температура наружного воздуха, например +8, -5, -10, -20 и т.д. °C. Данное значение должно обязательно задаваться при выполнении поверочного расчета.

Для расчета аварийной ситуации, когда подключенная нагрузка меньше установленной следует занести:

1. *Qmax*, Установленная тепловая мощность, Гкал – Данное поле используется для расчета аварийной ситуации, когда подключенная нагрузка больше установленной на источнике. При достижении предельного значения подключенной нагрузки в процессе расчета, будет соответственно снижена текущая температура на выходе из источника. В остальных расчетах следует оставлять пустым, в этом случае установленная тепловая мощность будет равняться подключенной нагрузке. Сводная таблица данных по источнику приведена в разделе <u>Раздел 24.1, «Источник</u> тепловой сети».

7.2.2. Потребитель

К тепловой сети подключаются, как правило, четыре вида тепловой нагрузки:

- отопление;
- горячее водоснабжение;
- вентиляция;
- технологическая нагрузка.

Потребитель может иметь одну или несколько тепловых нагрузок присоединенных к тепловой сети по различным схемам. Схема присоединения тепловой нагрузки зависит от следующих факторов:

- способа центрального регулирования;
- качества сетевой воды;
- соотношения нагрузки отопления и горячего водоснабжения;
- расчетных температур теплоносителя в тепловой сети и системе отопления и т.д.

При выполнении инженерных расчетов системы централизованного теплоснабжения необходимо также учитывать степень автоматизации схем подключения тепловых нагрузок. Подключаемые нагрузки потребителя могут быть:

- Не автоматизированы, т.е. не установлено никакого регулирующего оборудования;
- Частично автоматизированы, установлен, например, регулятор температуры на горячее водоснабжение, или регулятор расхода на систему отопления;
- Полностью автоматизированы, установлены регуляторы на все виды подключенной нагрузки.

Возможные устройства для регулирования. На систему отопления:

- Регулятор расхода поддерживает заданный (расчетный) расход сетевой воды на систему отопления;
- Регулятор нагрузки поддерживает расчетное количество тепловой энергии на систему отопления или необходимую температуру теплоносителя на входе в эту систему путем изменения расхода сетевой воды в зависимости от изменения температуры наружного воздуха.

На горячее водоснабжение:

• Регулятор температуры – поддерживающий заданную температуру теплоносителя на ГВС, например, 60°С.

На систему вентиляции:

• Регулирующий клапан, изменяющий расход сетевой воды на калориферную установку, например, в зависимости от температуры воздуха внутри здания.

В случае отсутствия регуляторов необходима установка дросселирующих устройств, ограничивающих расход сетевой воды на каждый вид подключенной нагрузки. Возможные места установки этих устройств показаны на схемах подключения потребителей к тепловой сети.

7.2.2.1. Информация по потребителю, необходимая для выполнения расчетов

- Высота здания потребителя, м-задается высота здания, если точной высоты здания не известно, можно принимать условно 3 метра на этаж;
- Номер схемы подключения потребителя-выбирается схема присоединения узла ввода;
- Расчетная темп. сет. воды на входе в потреб., °С-задается расчетное значение температуры сетевой воды, на которое было выполнено проектирование систем отопления и вентиляции данного потребителя, например 150, 130, 105 или 95 °С.

7.2.2.1.1. Данные по системе отопления потребителей

При наличии системы отопления независимо от выбранной схемы необходимо указать:

- Расчетная нагрузка на отопление, Гкал/ч-задается расчетная нагрузка на систему отопления. При отсутствии проектных данных расчетные тепловые нагрузки на отопление могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите настройки расчетов;
- Коэффициент изменения нагрузки отопления-задается пользователем в случае необходимости увеличения нагрузки на отопление по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на отопление будет увеличено соответственно на 10 или 20%;
- Расчетная темп. воды на входе в СО, °С- задается расчетное значение температуры теплоносителя на входе в систему отопления, на которое было выполнено проектирование, обычно 95 °C;
- Расчетная темп. воды на выходе из СО, °С- задается расчетное значение температуры теплоносителя на выходе из системы отопления, на которое было выполнено проектирование, обычно 70 °С;
- Расчетная темп. внутреннего воздуха для СО, °С-задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10 °С;
- Наличие регулятора на отопление-выбирается из списка наличие регулирующего устройства на систему отопления;
- Максимальное давление в обратном тр-де на СО, м-Задается максимально допустимое давление в обратном трубопроводе на СО для конкретного

потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов.

7.2.2.1.2. Зависимая система отопления потребителей

Для зависимых схем, с непосредственным, элеваторным или насосным смещением необходимо дополнительно занести следующую информацию:

• Расчетный располагаемый напор в СО, м- задается расчетное значение располагаемого напора (расчетное сопротивление системы отопления, м) при проектирования системы отопления, например 1 метр вод.ст. для элеваторных схем присоединения и 3, 4, 5 м вод.ст. и т.д. для насосных схем присоединения.

7.2.2.1.3. Независимая система отопления потребителей

Для независимых схем, подключенных через теплообменный аппарат необходимо дополнительно занести следующую информацию:

- 1. Количество секций ТО на СО- указывается количество секций теплообменного аппарата на СО например 1, 2, 3 и т.д;
- 2. Потери напора в 1-й секции ТО на СО, м-указываются потери напора в одной секции ТО на СО, например 0.5, 1, 1.5 м вод.ст;
- 3. Количество параллельных групп ТО на СО- указывается количество параллельных групп теплообменного аппарата на СО;
- 4. Расчетная темп. сет. воды на выходе из ТО, °С-расчетная темп. сетевой воды на выходе из ТО (выход 2ого контура) на систему отопления задается пользователем, например 95 °C;
- 5. Расчетная темп. сет. воды на выходе из потреб., °С-задается пользователем расчетная темп. сет. воды на выходе из потребителя (выход 1ого контура). Если на выходе из СО (по второму контуру) – 70, то эта температура должна быть выше, чем 70, например 75 °С.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

- Фактически установленное оборудование:
 - Коэффициент пропускной способности регулятора СО- задается коэффициент пропускной способности регулятора давления «подпора» в СО;
 - Номер установленного элеватора- задается номер фактически установленного элеватора, например 1, 2, 3;
 - Диаметр установленного сопла элеватора, мм-задается значение диаметра фактически установленного сопла элеватора, например 3, 5, 7 мм.
- Установленные шайбы на систему отопления:
 - Диаметр установленной шайбы на под.тр-де перед СО, мм-задается значение диаметра фактически установленной шайбы на подающем трубопроводе перед СО;

- Количество установленных шайб на под.тр-де перед СО, штзадается количество установленных шайб на подающем трубопроводе перед СО;
- Диаметр установленной шайбы на обр.тр-де после СО, мм-задается значение диаметра фактически установленной шайбы на обратном трубопроводе после СО;
- Количество установленных шайб на обр.тр-де после СО, штзадается количество установленных шайб на обратном трубопроводе после СО.

7.2.2.1.4. Данные по Системе Вентиляции потребителей

При наличии системы вентиляции необходимо указать:

- Расчетная нагрузка на вентиляцию, Гкал/ч-задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на вентиляцию могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите настройки расчетов;
- Коэффициент изменения нагрузки вентиляции-задается пользователем в случае необходимости увеличения нагрузки на вентиляцию по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на вентиляцию будет увеличено соответственно на 10 или 20%;
- Расчетная темп. наружного воздуха для СВ, °С- задается расчетное значение температуры наружного воздуха для проектирования системы вентиляции, например -20,-15, -11 °с и т.д;
- Расчетная темп. внутреннего воздуха для СВ, °С-задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы вентиляции, например 20, 18, 16 или 10 °С;
- Расчетный располагаемый напор в СВ, м- задается расчетное значение располагаемого напора (расчетное сопротивление калорифера, м вод.ст.) при проектирования системы вентиляции, например 0.5, 1.0, 1.5 м вод.ст;
- Наличие регулирующего клапана на СВ- указывается из списка наличие регулирующего клапана на систему вентиляции.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

Установленные шайбы на систему вентиляции:

- Диаметр установленной шайбы на систему вентиляции, мм-задается значение диаметра фактически установленной шайбы на систему вентиляции;
- Количество установленных шайб на систему вентиляции, шт-задается количество установленных шайб на систему вентиляции.

7.2.2.1.5. Данные по Системе ГВС потребителей

При наличии системы горячего водоснабжения, независимо от выбранной схемы присоединения следует указать:

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным в (Гкал/ч). При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите настройки расчетов;
- Коэффициент изменения нагрузки ГВС- задается пользователем в случае необходимости увеличения нагрузки на ГВС по сравнению с расчетным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное среднее значение нагрузки на ГВС будет увеличено соответственно на 10 или 20%;
- Число жителей- задается количество жителей для данного узла ввода, для учета часовой неравномерности;
- Температура воды на ГВС, °С- задается температура горячей воды, например 60, 65 и т.д. °С;
- *Температура холодной воды*, °С-задается температура холодной воды, например 5 °С;
- Наличие регулятора температуры-выбирается из списка наличие регулирующего устройства на систему ГВС;
- Максимальное давление на ГВС, м-задается максимально допустимое давление в обратном трубопроводе на ГВС для конкретного потребителя. Если поле не задано то по умолчанию используется значение из Настройки расчетов;
- Напор насоса в контуре ГВС, м-задается при необходимости напор повысительного насоса в системе ГВС.
- ГВС с открытым водоразбором
 - Потери напора в системе ГВС, м- задается величина потери напора в системе горячего водоснабжения.
- При наличии циркуляционной линии:
 - Доля циркуляции от расхода на ГВС, %- задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
 - Температура воды в цирк. контуре, °С- задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °С ниже чем температура воды на ГВС, например 45, 50 °С.
- ГВС с закрытым водоразбором и одноступенчатой схемой
 - Количество секций ТО ГВС I ступень- указывается количество секций теплообменного аппарата 1ой ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС I ступень- указывается количество параллельных групп теплообменного аппарата 10й ступени на ГВС;

- Потери напора в одной секции I ступени, м- указываются потери напора в одной секции ТО 10й ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
- Текущая температура холодной воды, °С- используется для поверочного расчета для закрытой системы ГВС. Задается температура холодной (водопроводной) воды на входе 2 контура нижней ступени;
- Балансовый коэффициент закр.ГВС- используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано, расчет берет значение коэффициента по умолчанию: 1.15 для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для двухступенчатой последовательной.

При наличии циркуляционной линии:

- Доля циркуляции от расхода на ГВС, %- задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
- Температура воды в цирк. контуре, °С- задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °С ниже чем температура воды на ГВС, например 45, 50 °С.
- Система ГВС с закрытым водоразбором и двухступенчатой схемой
 - Количество секций ТО ГВС I ступень- указывается количество секций теплообменного аппарата 1ой ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС I ступень- указывается количество параллельных групп теплообменного аппарата 10й ступени на ГВС;
 - Потери напора в одной секции I ступени, м- указываются потери напора в одной секции ТО 10й ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
 - Количество секций ТО ГВС II ступень- указывается количество секций теплообменного аппарата 20й ступени на ГВС например 1, 2, 3 и т.д;
 - Количество паралл. групп ТО ГВС II ступень- указывается количество параллельных групп теплообменного аппарата 20й ступени на ГВС;
 - Потери напора в одной секции II ступени, м- указываются потери напора в одной секции то 20й ступени на ГВС, например 0.5, 1, 1.5 м вод.ст;
 - Текущая температура холодной воды, °С- используется для поверочного расчета для закрытой системы ГВС. Задается температура холодной (водопроводной) воды на входе 2 контура нижней ступени;
 - Балансовый коэффициент закр.ГВС- используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и

расхода) на которую производится наладка. Если значение поля не задано, расчет берет значение коэффициента по умолчанию: 1.15 для одноступенчатой схемы, 1.1 для двухступенчатой смешанной, 1.25 для двухступенчатой последовательной.

При наличии циркуляционной линии:

- Доля циркуляции от расхода на ГВС, %- задается доля циркуляционного расхода ГВС от среднечасового расхода или средней нагрузки на ГВС в процентах, например 10, 15, 20. Как это сделать смотрите настройки расчетов;
- Температура воды в цирк. контуре, °С- задается температура воды в циркуляционном контуре ГВС. Она на 5-10 °С ниже чем температура воды на ГВС, например 45, 50 °С.
- Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

Установленные шайбы в системе горячего водоснабжения:

- Диаметр установленной циркуляционной шайбы на ГВС, мм- задается значение диаметра фактически установленной шайбы на ГВС;
- Количество установленных циркуляционных шайб на ГВС, шт.- задается количество установленных шайб на ГВС;
- Диаметр установленной шайбы в циркуляционной линии ГВС, мм- задается значение диаметра фактически установленной шайбы на циркуляционной линии ГВС;
- Количество установленных шайб в циркуляционной линии ГВС, шт.- задается количество установленных шайб на циркуляционной линии ГВС.

Для расчетов схем с теплообменными аппаратами при различных режимах, следует задать параметры теплообменника на какой-то известный режим. Расчет схем потребителей с параллельным подключением теплообменника на ГВС можно выполнять на:

- Жестко заданные испытательные параметры, «зашитые» в программе: T11 = 70, T12 = 30, а *T21* и *T22*берутся по значениям холодной и горячей воды, заданной на источнике;
- Испытательные параметры, которые пользователь сам может задавать на потребителе. Это могут быть как проектные параметры, так и параметры, измеренные при испытании теплообменного аппарата. Подробнее об испытательных параметрах <u>Глава 8, Испытательные параметры теплообменного аппарата</u>.

При центральном регулировании отпуска теплоты по совместной нагрузке отопления и горячего водоснабжения (скорректированный или повышенный температурный график) и отсутствии автоматических устройств регулирования дросселирующие устройства или балансировочные клапаны должны устанавливаться на абонентском вводе перед точкой отбора воды на горячее водоснабжение и регулировать два вида нагрузки отопление и ГВС. Для этого следует указать установленные шайбы на вводе:

• Диаметр шайбы на вводе на под.тр-де, мм- задается диаметр шайбы на вводе на подающем трубопроводе;

- Количество шайб на вводе на под. тр-де, шт-задается количество шайб на вводе на подающем трубопроводе;
- Диаметр шайбы на вводе на обр. тр-де, мм-задается диаметр шайбы на вводе на обратном трубопроводе;
- Количество шайб на вводе на обр. тр-де, шт-задается количество шайб на вводе на обратном трубопроводе.

7.2.3. Центральный тепловой пункт (ЦТП)

Для выполнения расчетов обязательно надо занести следующую информацию:

- *Номер схемы подключения* ЦТП выбирается схема присоединения узла ввода. Схемы приведены в <u>Раздел А.2, «Расчетные схемы присоединения ЦТП»;</u>
- Способ дросселирования на ЦТП- указывается способ дросселирования на ЦТП цифрой от 0 до 6;
- 0- дросселирование на ЦТП не производится, если это не является обязательным;
- 1- дросселируется выход из ЦТП на отопление, шайба устанавливается всегда на подающем трубопроводе;
- 2- дросселируется выход из ЦТП на отопление, шайба устанавливается всегда на обратном трубопроводе;
- З- дросселируется выход из ЦТП на отопление, места установки шайб определяются автоматически;
- 4- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), места установки шайб определяются автоматически;
- 5- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на подающем трубопроводе;
- 6- устанавливаются шайбы на вводе в ЦТП (общие на отопление и ГВС), шайба устанавливается всегда на обратном трубопроводе;
- Запас напора при дросселировании, м- задается пользователем запас напора при дросселировании, например 1, 2 и т.д. метров.

7.2.3.1. Данные по системе отопления ЦТП

При наличии системы отопления необходимо указать:

- Расчетная температура на входе 1 контура, °С-Задается расчетное значение температуры теплоносителя на входе в первый контур, например 150, 130, 110 или 95°С;
- Расчетная температура на выходе 1 контура, °С-Задается расчетное значение температуры теплоносителя на выходе из первого контура, например 75, 80 °С;
- Расчетная температура на входе 2 контура, °С-Задается расчетное значение температуры теплоносителя на входе во второй контур, например 70°С;
- Расчетная температура на выходе 2 контура, °С-Задается расчетное значение температуры теплоносителя на выходе из второго контура, например 95°С;
- Расчетная температура внутр. воздуха для СО, °С- задается расчетное значение температуры воздуха внутри отапливаемых помещений при проектировании системы отопления, например 20, 18, 16 или 10°С;
- Расчетная температура наружного воздуха, °С- задается расчетное значение температуры наружного воздуха, которое принимается в соответствии со СНиП, например -30, 35°С.
- Зависимая система отопления ЦТП
 - Располагаемый напор второго контура, м.-задается располагаемый напор второго контура, в случае если это предусмотрено схемой подключения.
 - Напор в обратнике второго контура, м-задается напор в обратном трубопроводе второго контура, если это предусмотрено схемой подключения. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например если геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, то расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров.
- Независимая система отопления ЦТП
 - Располагаемый напор второго контура, м-задается располагаемый напор второго контура, в случае если это предусмотрено схемой подключения.
 - Напор в обратнике второго контура, м-задается напор в обратном трубопроводе второго контура, если это предусмотрено схемой подключения. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например если геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, то расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров;
 - Количество секций ТО на СО-задается пользователем количество секций ТО, например, 1, 2, 3 и т.д;
 - Потери напора в 1-й секции ТО на СО, м-задаются пользователем потери напора в теплообменном аппарате, например, 0.1, 0.2, 0.3, м;
 - Количество параллельных групп ТО на СО-задается количество параллельных групп ТО, например, 1, 2, 3 и т.д.

Испытательные параметры теплообменного аппарата:

- Исп. температура воды на входе 1 контура, °С-задается температура воды на входе 1 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры ТО;
- Исп. температура воды на выходе 1 контура, °С-задается температура воды на выходе 1 контура по результатам испытаний, если испытания не про-

водились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры ТО;

- Исп. температура воды на входе 2 контура, °С-задается температура воды на входе 2 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры TO;
- Исп. температура воды на выходе 2 контура, °С-задается температура воды на выходе 2 контура по результатам испытаний, если испытания не проводились, задается проектное значение. Подробнее об испытательных параметрах смотрите раздел испытательные параметры ТО.

Подробнее об испытательных параметрах можно узнать в разделе <u>Глава 8, Испыта-</u> *тельные параметры теплообменного аппарата*.

Для поверочного расчета следует дополнительно указать следующую информацию:

- *Текущая температура наружного воздуха*, *°С*-задается пользователем текущая температура наружнего воздуха, например 8,0,-10,-26 °С;
- Исп. расход 1 контура, т/ч-задается пользователем испытательный расход 1 контура по результатам испытаний. Если испытания не проводились, то для наладочного расчета задается равным 0. Для поверочного расчета можно задать проектное значение;
- Исп. расход 2 контура, т/ч-задается пользователем испытательный расход 2 контура по результатам испытаний. Если испытания не проводились, то для наладочного расчета задается равным 0. Для поверочного расчета можно задать проектное значение.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

- Номер установленного группового элеватора-задается номер установленного группового элеватора, например 1, 2, 3, 4, 5, 6, 7;
- Диаметр установленного сопла элеватора, мм-задается значение установленного диаметра сопла элеватора, например 3, 5, 7, 9 мм.

Установленные шайбы на систему отопления:

- Диаметр установленной шайбы на под.тр-де, мм-задается пользователем диаметр установленной шайбы на подающем тр-де 1 контура;
- Количество установленных шайб на под.тр-де (1 контур), штзадается пользователем количество установленных шайб на подающем тр-де 1 контура;
- Диаметр установленной шайбы на обр.тр-де (1 контур), мм-задается пользователем диаметр установленной шайбы на обратном тр-де l контура;
- Количество установленных шайб на обр.тр-де (1 контур), шт-задается пользователем количество установленных шайб на обратном тр-де 1 контура.

7.2.3.2. Данные по системе ГВС на ЦТП

7.2.3.2.1. Одноступенчатая схема подключения ГВС на ЦТП

7.2.3.2.1.1. При использовании вспомогательного участка

- Располагаемый напор 2 контура ГВС, м-для закрытых систем горячего водоснабжения задается располагаемый напор во втором контуре;
- Напор в обратнике 2 контура ГВС, м- для закрытых систем горячего водоснабжения задается напор в циркуляционном трубопроводе во второго контура;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- *Температура холодной воды*, °С-задается пользователем температура холодной воды;
- Температура воды на ГВС, °С- задается температура воды поступающей в систему горячего водоснабжения.

Испытательные параметры:

- Исп. температура на входе 1 контура нижней ступени, °С;
- Исп. температура на выходе 1 контура нижней ступени, °С;
- Исп. температура на входе 2 контура нижней ступени, °С;
- Исп. температура на выходе 2 контура нижней ступени, °С;
- Исп. тепловая нагрузка нижней ступени, Гкал/час.

Подробнее об испытательных параметрах можно узнать в разделе <u>Глава 8, Испыта-</u> <u>тельные параметры теплообменного аппарата</u>.

7.2.3.2.1.2. Без вспомогательного участка

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите здесь;
- Балансовый коэффициент закр. ГВС- значение этого поля используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балан-

совый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка;

- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- *Температура холодной воды*, °С-задается пользователем температура холодной воды;
- *Температура воды на ГВС*, °С- задается температура воды поступающей в систему горячего водоснабжения.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

1. Наличие регулятора на ГВС- указывается признак наличия регулятора температуры на систему горячего водоснабжения: 0- отсутствует; 1- установлен.

Установленные шайбы на ГВС:

- 1. Диаметр установленной шайбы на ГВС, мм-задается пользователем диаметр установленной шайбы на ГВС (1 контур);
- 2. Количество установленных шайб на ГВ С, шт-задается пользователем количество установленных шайб на ГВС (1 контур).

7.2.3.2.2. Двухступенчатая схема подключения ГВС на ЦТП

7.2.3.2.2.1. При использовании вспомогательного участка

- Располагаемый напор 2 контура ГВС, м- для закрытых систем горячего водоснабжения задается располагаемый напор во втором контуре;
- Напор в обратнике 2 контура ГВС, м- для закрытых систем горячего водоснабжения задается напор в циркуляционном трубопроводе во второго контура;
- Количество секций ТО ГВС 1ой ступени- задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;
- Количество секций ТО ГВС II ступень-задается пользователем количество секций ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС II ступень-задается количество параллельных групп ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;

- Потери напора в одной секции II ступени, м-задаются потери напора в одной из секций ТО 2 ступени на ГВС например, 1 метр;
- *Температура холодной воды*, °С-задается пользователем температура холодной воды;
- Температура воды на ГВС, °С- задается температура воды поступающей в систему горячего водоснабжения.

Испытательные параметры:

- Исп. температура на входе 1 контура нижней ступени, °С;
- Исп. температура на выходе 1 контура нижней ступени, °С;
- Исп. температура на входе 2 контура нижней ступени, °С;
- Исп. температура на выходе 2 контура нижней ступени, °С;
- Исп. тепловая нагрузка нижней ступени, Гкал/час;
- Исп. температура на входе 1 контура II ступени, °С;
- Исп. температура на выходе 1 контура II ступени, °С;
- Исп. температура на входе 2 контура II ступени, °С;
- Исп. температура на выходе 2 контура II ступени, °С;
- Исп. тепловая нагрузка II ступени, Гкал/час.

Подробнее об испытательных параметрах можно узнать в разделе <u>Глава 8, Испыта-</u> <u>тельные параметры теплообменного аппарата</u>.

7.2.3.2.2.2. Без вспомогательного участка

- Расчетная средняя нагрузка на ГВС, Гкал/ч-задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите здесь;
- Балансовый коэффициент закр. ГВС- значение этого поля используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС.
 Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка;
- Количество секций ТО ГВС 1ой ступени-задается пользователем количество секций ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС 1ой ступени-задается количество параллельных групп ТО 1 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции 1ой ступени, м-задаются потери напора в одной из секций ТО 1 ступени на ГВС например, 1 метр;

- Количество секций ТО ГВС II ступень-задается пользователем количество секций ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Количество паралл. групп ТО ГВС II ступень-задается количество параллельных групп ТО 2 ступени на ГВС например, 1, 2, 3 и т.д;
- Потери напора в одной секции II ступени, м-задаются потери напора в одной из секций ТО 2 ступени на ГВС например, 1 метр.

Для поверочного расчета с фактически установленным оборудованием следует указать следующую информацию:

1. Наличие регулятора на ГВС- указывается признак наличия регулятора температуры на систему горячего водоснабжения: 0- отсутствует; 1- установлен.

Установленные шайбы на ГВС:

- 1. Диаметр установленной шайбы на ГВС, мм-задается пользователем диаметр установленной шайбы на ГВС (1 контур);
- 2. Количество установленных шайб на ГВ С, шт-задается пользователем количество установленных шайб на ГВС (1 контур).

7.2.4. Обобщенный потребитель

Обобщенный потребитель используется для расчета магистральных трубопроводов, при отсутствии данных по внутриквартальным сетям, по потребителям.

- *H_geo*, *Геодезическая* отметка, *м*-Задается отметка оси (верха) трубы, данного узла ввода. Она может автоматически быть считана со слоя рельефа (<u>Раздел 19.3</u>, «Автоматическое занесение геодезических отметок объектов сети со слоя <u>рельефа</u>»).
- *N_schem*, *Способ задания нагрузки* Выбирается из списка способ задания нагрузки: расходом или сопротивлением.

0 (или пусто)- задается расходом

1- задается расчетным сопротивлением

- *Н*, *Требуемый напор*, *м*-Задается требуемый напор на обобщенном потребителе;
- Вета, Доля водоразбора из подающего тр-да-Задается доля отбора воды (от 0 до 1) из подающего трубопровода при открытом водоразборе системы горячего водоснабжения. Например, при значении данного поля 0- весь отбор воды будет происходить из обратного трубопровода, а при значении 0.5- половина воды будет отбираться из подающего, а половина из обратного трубопроводов.
- При задания нагрузки расходом:
 - Gpod, Расход на СО, СВ и закр. системы ГВС, т/ч-Задается суммарный расход теплоносителя в подающем трубопроводе;

- Коо, Коэфф. изменения расхода на СО, СВ и закр. системы ГВС-Задается коэффициент изменения циркулирующего расхода. Например, при значении данного поля 1.1, значение поля Gpod, Расход на СО, СВ и закр. системы ГВС будет увеличено на 10%;
- Gu_r, Расход на открытый водоразбор, т/ч- Задается расход теплоносителя на открытый водоразбор системы горячего водоснабжения. В данном поле также можно задать величину расхода учитывающего утечки;
- Кдv, Коэффициент изменения расхода на водоразбор-Задается коэффициент изменения расхода на открытый водоразбор системы горячего водоснабжения. Например, при значении данного поля 1.2, значение поля Gu_r, Расход на открытый водоразбор будет увеличено на 20%.
- При задания нагрузки сопротивлением:
 - Sr, Расчетное обобщенное сопротивление, м/ (т/ч) ^2- Задается расчетное обобщенное сопротивление обобщенного потребителя, например квартала.

Также при необходимости можно задать:

- Hzdan, Минимальный статический напор, м-Задается значение минимального статического напора;
- Способ определения температуры обр. воды -Задается цифрой способ определения температуры: 0 (или пусто)-по отопительной формуле; 1- по фактической температуре. Для учета фактической температуры в различных расчетах следует включить эту опцию в настройках расчетов;
- Фактическая температура обр. воды, °С-Указывается фактическая температура воды на выходе из обобщенного потребителя.

Сводная таблица данных по обобщенному потребителю приведена в разделе <u>Раздел 24.10</u>, «Обобщенный потребитель».

7.2.5. Запорная арматура

Для выполнения наладочного и поверочного расчетов надо занести следующую информацию:

• *H_geo*, *Геодезическая* отметка, м-Задается отметка оси (верха) трубы, на которой установлено данное запорное или регулирующее устройство. Она может автоматически быть считана со слоя рельефа (<u>Раздел 19.3, «Автоматическое занесе-</u> ние геодезических отметок объектов сети со слоя рельефа»).

(i) Примечание

Если по объекту указана только геодезическая отметка, он работает как простой узел.

• Mark_pod, Марка задвижки на подающем- Выбирается из справочника марка установленной запорной арматуры на подающем трубопроводе. Подробнее о работе со справочником Раздел 20.3, «Справочник по запорной арматуре».

- *D_pod*, *Условный диаметр на подающем*, *м*-Задается пользователем диаметр установленной на подающем трубопроводе запорной арматуры, например 0.1, 0.2 м.
- Per_pod, Степень открытия на подающем-Задается пользователем степень открытия арматуры установленной на подающем трубопроводе. Сопротивление соответствующее степени открытия можно просмотреть в Справочнике по запорной арматуре при выборе марки (Раздел 20.3, «Справочник по запорной арматуре»).
- *Mark_obr*, *Марка задвижки на обратном* Выбирается из справочника марка установленной запорной арматуры на обратном трубопроводе. Подробнее о работе со справочником <u>Раздел 20.3</u>, «Справочник по запорной арматуре».
- *D_obr*, Условный диаметр на обратном, м-Задается пользователем диаметр установленной на обратном трубопроводе запорной арматуры, например 0.1, 0.2 м.
- *Per_obr*, *Степень открытия на обратном*-Задается пользователем степень открытия арматуры установленной на обратном трубопроводе. Сопротивление соответствующее степени открытия можно просмотреть в Справочнике по запорной арматуре при выборе марки (<u>Раздел 20.3</u>, «Справочник по запорной арматуре»).

Сводная таблица данных по запорной арматуре приведена в разделе <u>Раздел 24.5, «За-порная арматура»</u>

7.2.6. Участок тепловой сети

Для выполнения наладочного и поверочного расчетов надо занести следующую информацию по участкам тепловой сети

- *L*, *Длина участка*, *м*-задается длина участка трубопровода в плане с учетом длины П-образных компенсаторов. Данное поле можно заполнить автоматически, взяв длину участка с карты в масштабе. <u>Раздел 19.1</u>, «Автоматическое занесение длины с карты»
- Dpod, Внутренний диаметр подающего трубопровода, м- задается в метрах внутренний диаметр подающего трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, *Технические характеристики стальных трубо-проводов для тепловой сети*);
- Dobr, Внутренний диаметр обратного трубопровода, м-задается в метрах внутренний диаметр обратного трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, *Технические характеристики стальных трубопроводов для тепловой сети*);
- Ке_род, Шероховатость подающего трубопровода, мм-Задается коэффициент шероховатости подающего трубопровода, например 0.5, 1, 2 мм. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм;
- *Ке_obr*, *Шероховатость* обратного трубопровода, мм-Задается коэффициент шероховатости обратного трубопровода, например 0.5, 1, 2 мм. Для новых

стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм;

- Кг_род, Коэффициент местного сопротивления подающего трубопровода- Задается коэффициент местного сопротивления для подающего трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для подающего трубопровода будет задан равным 1.0, то действительная длина подающего трубопровода увеличена не будет;
- *Кz_obr*, *Коэффициент местного сопротивления обратного трубо-провода*-Задается коэффициент местного сопротивления для обратного трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для обратного трубопровода будет задан равным 1.0, то действительная длина обратного трубопровода увеличена не будет.

(i) Примечание

Если местные сопротивления неизвестны, то в этом случае пользователь может увеличить действительную длину трубопровода добавлением эквивалентной длины, характеризующей потери в местных сопротивлениях. Для этого следует задать для полей Коэффициент местного сопротивления под. тр-да. и Коэффициент местного сопротивления под. тр-да. значения от 1.05 до 1.2

Если вид местных сопротивлений и их количество известны, их следует указать с помощью справочника по местным сопротивлениям. Этот справочник заносится в поле Местные сопротивления под. (обр.) тр-да;

- Zpod_str, Местные сопротивления под. тр-да Задаются местные сопротивления, установленные на подающем трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе <u>Раздел 20.5, «Справочник по местным сопротивлениям</u>. Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений под. тр-да. Значения коэффициентов местных сопротивлений приведены в приложении (<u>Приложение E, Коэффициенты</u> *местных сопротивлений на участке трубопровода*);
- Zobr_str, Местные сопротивления обр. тр-да Задаются местные сопротивления, установленные на обратном трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе <u>Раздел 20.5, «Справочник по местным сопротивлениям»</u>. Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений обр. тр-да. Значения коэффициентов местных сопротивлений приведены в приложении (<u>Приложение E, Коэффициенты</u> местных сопротивлений на участке трубопровода).

Примечание

Указывая местные сопротивления, установленные на сети, следует, чтобы значения полей Коэффициент местного сопротивления подающего трубопровода и Коэффициент местного сопротивления обратного трубопровода были равными 1.

Также при необходимости можно задать:

- Zarost_pod, Зарастание подающего трубопровода, мм-Задается пользователем величина зарастания подающего трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь;
- Zarost_obr, Зарастание обратного трубопровода, мм-Задается пользователем величина зарастания обратного трубопровода, например 5, 10, 15 мм. Зарастание трубопровода приводит к уменьшению внутреннего диаметра трубопровода и резкому увеличению гидравлических потерь;
- StatZone, Разделитель зон статического напора-Задается, если необходимо, признак разделения данным участком сети на зоны с разным статическим напором: 1- от начала участка начинается новая зона, 0 или пусто- разделение на зоны отсутствует;
- Q1_pod, Дополнительные потери тепла под.тр-да, ккал-Задаются дополнительные фиксированные тепловые потери для подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников. При этом значения потерь должны были задаваться обязательно положительным числом.

Чтобы имитировать поступление в сеть дополнительной тепловой энергии, независимо от источника его происхождения, например, от греющих контуров других технических объектов, утилизирующих свое тепло и т.п. нужно обязательно задавать отрицательное значение. Расчет будет это воспринимать не как потерю, а как поступление дополнительного тепла в систему (тепловая подпитка). При этом температура теплоносителя на выходе из участка (при отсутствии других тепловых потерь) будет выше температуры на входе в участок;

• Q1_obr, Дополнительные потери тепла обр. тр-да, ккал-задаются дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников. При этом значения потерь должны были задаваться обязательно положительным числом.

Чтобы имитировать поступление в сеть дополнительной тепловой энергии, независимо от источника его происхождения, например, от греющих контуров других технических объектов, утилизирующих свое тепло и т.п. нужно обязательно задавать отрицательное значение. Расчет будет это воспринимать не как потерю, а как поступление дополнительного тепла в систему (тепловая подпитка). При этом температура теплоносителя на выходе из участка (при отсутствии других тепловых потерь) будет выше температуры на входе в участок.

Участок можно задавать с помощью сопротивления для этого следует задать следующие поля

- Сопротивление подающего тр-да, м/ (т/ч) ^2- Задается пользователем величина сопротивления подающего трубопровода. Данная величина задается для уточнения математической модели в случае, если были проведены замеры расхода теплоносителя и давления в начале и конце участка сети;
- Сопротивление обратного тр-да, м/ (т/ч) ^2-Задается пользователем величина сопротивления обратного трубопровода. Данная величина задается для уточнения математической модели в случае, если были проведены замеры расхода теплоносителя и давления в начале и конце участка сети.

При моделировании участка с помощью сопротивления, значения суммы коэффициентов местных сопротивления, шероховатости и зарастания не учитываются.

Сводная таблица данных по участкам тепловой сети приведена в разделе <u>Раздел 24.6</u>, <u>«Участок тепловой сети»</u>.

7.2.7. Насосная станция

Для выполнения наладочного и поверочного расчетов надо занести следующую информацию по насосным станциям сети:

- Туре_род, Способ задания насоса на подающем-Выбирается из списка способ задания насоса на подающем трубопроводе. 0 (или пусто)- по умолчанию;
 1- характеристикой насоса;
 2- напором на насосе;
 3- напор после насоса (с учетом геодезической отметки);
 4- давление после насоса.
- 2. Mark_pod, Марка насоса на подающем-Выбирается из справочника марка насоса установленного на подающем трубопроводе. <u>Раздел 20.2</u>, «Справочник по насосам»
- 3. *Npod*, Число насосов на подающем тр-де Указывается число параллельно работающих насосов одинаковых марок, установленных на подающем трубопроводе.
- 4. Нрод, Напор насоса на подающем трубопроводе, м-Задается напор, развиваемый насосом на подающем трубопроводе. Используется в том случае если способ задания насоса указан как 2 (напором на насосе) или когда не указана марка насоса и способ задания не указан. Если насос повышает напор, то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например +30,-40 м.
- 5. *Pr_pod*, *Напор после насоса на подающем*, *м*-Задается пользователем. В случае если способ задания насоса указан 3 (напор после насоса), то указывается значение напора после насоса с учетом геодезической отметки. Если способ задания насоса 4 (давление после насоса), то указывается значение напора после насоса, без учета геодезии.
- Туре_obr, Способ задания насоса на обратном-Выбирается из списка способ задания насоса на подающем трубопроводе. 0 (или пусто) - по умолчанию;
 1- характеристикой насоса; 2- напором на насосе; 3- напор до насоса (с учетом геодезической отметки); 4- давление до насоса.
- 7. Mark_obr, Марка насоса на обратном Выбирается из справочника марка насоса установленного на обратном трубопроводе. <u>Раздел 20.2, «Справочник по</u> <u>насосам»</u>
- 8. Nobr, Число насосов на обратном тр-де Указывается число параллельно работающих насосов одинаковых марок, установленных на обратном трубопроводе.
- 9. Hobr, Напор насоса на обратном трубопроводе, м-Задается напор, развиваемый насосом на обратном трубопроводе. Используется в том случае если способ задания насоса указан как 2 (напором на насосе) или когда не указана мар-

ка насоса и способ задания не указан. Если насос повышает напор, то значение записывается со знаком плюс, если понижает напор, то со знаком минус, например +30,-40 м.

10.*Pr_obr*, *Напор перед насосом на обратном*, *м*-Задается пользователем. В случае если способ задания насоса указан 3 (напор после насоса), то указывается значение напора после насоса с учетом геодезической отметки. Если способ задания насоса 4 (давление после насоса), то указывается значение напора перед насосом, без учета геодезии.

Примечание

Если насос установлен только на подающем трубопроводе, значение напора на обратном трубопроводе задавать не следует, и наоборот.

Сводная таблица данных по насосам приведена в разделе <u>Раздел 20.2, «Справочник по</u> насосам»;

7.2.8. Вычисляемая дроссельная шайба

В случае если шайба установлена только на подающем трубопроводе, значения полей связанные с обратным трубопроводом заполнять не следует, и наоборот.

Для выполнения наладочного и поверочного расчета нужно занести следующую информацию:

- *Dbp_pod*, Диаметр байпаса на подающем трубопроводе, м-Задается пользователем диаметр байпаса подающего трубопровода, например 0.05, 0.1 и т.д. метров;
- Dbp_obr, Диаметр байпаса на обратном трубопроводе, м-Задается пользователем диаметр байпаса обратного трубопровода, например 0.05, 0.1 и т.д. метров;
- Lbp_pod, Длина байпаса на подающем трубопроводе, м-Задается длина байпаса на подающем трубопроводе, например 5, 8 и т.д. метров;
- Lbp_obr, Длина байпаса на обратном трубопроводе, м-Задается длина байпаса на обратном трубопроводе, например 5, 8 и т.д. метров;
- *Ке_bp*, *Шероховатость* байпаса, *мм*-Задается шероховатость байпаса, например 0.5, 1, 2, 3 и т.д. мм.

Также можно задать:

- Zbp_pod, Сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода-Задается сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- *Zbp_obr*, *Сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода-* Задается сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;

• *Hzapas*, *Запас напора*, *м*- Задается пользователем запас напора на шайбе, например 1, 2 и т.д. метров.

Примечание

В результате выполнения наладочного расчета для вычисляемой дроссельной шайбы определяются значения полей Диаметр шайбы на байпасе подающего (или обратного) трубопровода, мм и Количество шайб на байпасе подающего(или обратного) трубопровода.

Сводная таблица данных по вычисляемой дроссельной шайбе приведена в разделе <u>Раздел 24.7, «Дросселирующий узел»</u>.

7.2.9. Устанавливаемая дроссельная шайба

В случае если шайба установлена только на подающем трубопроводе, значения полей связанные с обратным трубопроводом заполнять не следует, и наоборот.

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по установленной дроссельной шайбе:

- *Dbp_pod*, *Диаметр* байпаса на подающем трубопроводе, м-Задается пользователем диаметр байпаса подающего трубопровода, например 0.05, 0.1 и т.д. метров;
- Dbp_obr, Диаметр байпаса на обратном трубопроводе, м-Задается пользователем диаметр байпаса обратного трубопровода, например 0.05, 0.1 и т.д. метров;
- Lbp_pod, Длина байпаса подающего трубопровода, м-Задается длина байпаса на подающем трубопроводе, например 5, 8 и т.д. метров;
- Lbp_obr, Длина байпаса обратного трубопровода, м-Задается длина байпаса на обратном трубопроводе, например 5, 8 и т.д. метров;
- *Zbp_pod*, *Сумма коэффициентов местных сопротивлений на байпасе* подающего трубопровода-Задается сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- *Zbp_obr*, *Сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода-* Задается сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;
- *Ке_bp*, *Шероховатость байпаса*, *мм*-Задается шероховатость байпаса, например 0.5, 1, 2, 3 и т.д. мм;
- Dshb_pod, Диаметр шайбы на байпасе подающего трубопровода, мм-Задается пользователем диаметр установленной шайбы на байпасе подающего трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;
- Dshb_obr, Диаметр шайбы на байпасе обратного трубопровода, мм- Задается пользователем диаметр установленной шайбы на байпасе обратного

трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;

- Nshb_pod, Количество шайб на байпасе подающего трубопровода, шт-Задается пользователем количество установленных шайб на байпасе подающего трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи;
- Nshb_obr, Количество шайб на байпасе обратного трубопровода, шт-Задается пользователем количество установленных шайб на байпасе обратного трубопровода. Для вычисляемой дроссельной шайбы значение данного поля определяется в результате выполнения наладочной задачи.

Сводная таблица данных по устанавливаемой дроссельной шайбе приведена в разделе Раздел 24.7, «Дросселирующий узел».

7.2.10. Регулятор давления

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору давления на подающем или обратном трубопроводе:

- *Н*, *Регулируемый параметр напор*, *м* (*расход*, *т/ч*)-Задается значение регулируемого давления в подающем трубопроводе с учетом геодезической отметки, например 120, 130 метров;
- *Кгед*, *Коэф*. пропускной способности- Значение пропускной способности клапана Ку выражает уровень расхода (т/ч) регулирующего клапана, находящегося в определенном положении с потерей давления 1 бар.

Сводная таблица данных по регулятору давления приведена в разделе <u>Раздел 24.7</u>, <u>«Дросселирующий узел»</u>.

7.2.11. Регулятор располагаемого напора

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору располагаемого напора на подающем или обратном трубопроводе:

- *Н*, *Регулируемый параметр напор*, *м* (расход, т/ч)-Задается значение регулируемого располагаемого напора, например 10, 20, 40 метров;
- *Кreg*, *Коэф*. пропускной способности- Значение пропускной способности клапана Кv выражает уровень расхода (т/ч) регулирующего клапана, находящегося в определенном положении с потерей давления 1 бар.

Сводная таблица данных по регулятору располагаемого напора приведена в разделе Раздел 24.7, «Дросселирующий узел».

7.2.12. Регулятор расхода

Для выполнения наладочного и поверочного расчетов нужно занести следующую информацию по регулятору расхода на подающем или обратном трубопроводе:

- *Н*, *Регулируемый параметр напор*, *м* (расход, т/ч)-Задается значение регулируемого расхода воды в подающем трубопроводе, например 20, 50, 100 т/ч;
- *Кгед, Коэф. пропускной способности* Значение пропускной способности клапана Ку выражает уровень расхода (т/ч) регулирующего клапана, находящегося в определенном положении с потерей давления 1 бар.

Сводная таблица данных по регулятору расхода приведена в разделе <u>Раздел 24.7</u>, <u>«Дросселирующий узел»</u>.

7.2.13. Локальное сопротивление

Для выполнения наладочного и поверочного расчетов по объекту Локальное сопротивление нужно занести следующую информацию:

- *Dbp_pod*, Диаметр байпаса на подающем трубопроводе, м-Задается пользователем диаметр локального сопротивления, установленного на подающем трубопроводе, например 0.05, 0.1 и т.д. метров;
- Zbp_pod, Сумма коэффициентов местных сопротивлений на байпасе подающего трубопровода-Задается сумма коэффициентов местных сопротивлений локального сопротивления, установленного на подающем трубопроводе, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;

• 👔 Примечание

В случае если сопротивление установлено только на подающем трубопроводе, значения полей связанные с обратным трубопроводом заполнять не следует, и наоборот.

- *Dbp_obr*, *Диаметр* байпаса на обратном трубопроводе, м-Задается пользователем диаметр локального сопротивления, установленного на обратном трубопроводе, например 0.05, 0.1 и т.д. метров;
- Zbp_obr, Сумма коэффициентов местных сопротивлений на байпасе обратного трубопровода-Задается сумма коэффициентов местных сопротивлений локального сопротивления, установленного на обратном трубопроводе, например 4, 8 и т.д. Значения коэффициентов местных сопротивлений приведены в таблице Приложения 2;

Сводная таблица данных по объекту Локальное сопротивление приведена в разделе <u>Раздел 24.7, «Дросселирующий узел»</u>.

7.3. Дополнительные исходные данные для расчета с учетом тепловых потерь

Для проведения расчета с учетом тепловых потерь необходимо занести дополнительные данные:

По источнику тепловой сети:

- *Tsg_pod*, *Среднегодовая температура в под. тр-де*, *°С.* Задается величина среднегодовой температуры в подающем трубопроводе;
- *Tsg_obr*, *Среднегодовая температура в обр. тр-де*, *°С.* Задается величина среднегодовой температуры в обратном трубопроводе;
- *Tsg_grunt*, *Среднегодовая температура грунта*, °С.- Задается величина среднегодовой температуры грунта;
- *Tsg_nv*, *Среднегодовая температура наружного воздуха*, °С.-Задается величина среднегодовой температуры наружного воздуха;
- *Tsg_podval*, *Среднегодовая температура воздуха в подвалах*, °*С*.-Задается величина среднегодовой температуры воздуха в подвалах;
- *Tgrunt*, *Текущая температура грунта*, °С.- Задается величина текущей температуры грунта;
- *Tpodval*, *Текущая температура воздуха в подвалах*, °С.-Задается величина текущей температуры воздуха в подвалах;
- Period, Продолжительность работы системы теплоснабжения-Задается число часов работы системы теплоснабжения в год, для этого встать на соответствующую строку и нажать на кнопку , в выпавшем меню выбрать необходимое значение: менее 5000 часов работы системы теплоснабжения в год или более 5000 часов.

Примечание

В соответствии с СНиП 41-02-2003 «Тепловые сети» при определении тепловых потерь трубопроводами расчетная температура теплоносителя принимается для подающих теплопроводов водяных тепловых сетей:

- при переменной температуре сетевой воды и качественном регулировании среднегодовая температура теплоносителя 110 °C при температурном графике регулирования 180-70 °C, 90 °C, при 150-70 °C, 65 °C при 130-70 °C и 55 °C при 95-70 °C;
- Среднегодовая температура для обратных теплопроводов водяных тепловых сетей принимается 50 °C;
- При размещении теплопроводов в подвалах жилых зданий температура внутреннего воздуха принимается равной 20 °C, а температура на поверхности конструкции теплопроводов не выше 45 °C.

7.3.1. Расчет по нормированным потерям

По участкам тепловой сети:

- Proklad, Вид прокладки тепловой сети-Задается вид прокладки участка трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку • и в открывшемся меню выбрать требуемый пункт: надземная, подземная канальная, подземная бесканальная, подвальная;
- Norma, Нормативные потери в тепловой сети-Пользователем указывается норматив на основе которого будет производиться расчет, для этого требует-

ся выбрать соответствующую строку, нажать кнопку 🔻 и в открывшемся меню выбрать требуемый пункт: 1959 год, 1988 год, 1997 год, 2003 года, КТМ 204 (Украина);

- Кроргаv, Поправочный коэфф. на нормы тепловых потерь для подающего тр-да-Задается для подающего трубопровода пользователем по результатам температурных испытаний. Если температурные испытания не проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0;
- Крор_obr, Поправочный коэффициент на нормы тепловых потерь для обратного. тр-да-Задается для обратного трубопровода пользователем по результатам температурных испытаний. Если температурные испытания не проводились, поправочный коэффициент на нормы тепловых потерь принимается равным 1.0;
- Q1_pod, Дополнительные потери тепла под. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников;
- Q1_obr, Дополнительные потери тепла обр. тр-да, ккал- Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников.

7.3.2. Расчет тепловых потерь с учетом фактической изоляции

Для проведения расчета с тепловых потерь по фактическому состоянию изоляции необходимо занести следующие данные:

По участкам тепловой сети:

- Proklad, Вид прокладки тепловой сети-Задается число вид прокладки участка тепловой сети, для этого для этого требуется выбрать соответствующую строку, нажать кнопку • и в открывшемся меню выбрать требуемый пункт: надземная прокладка, канальная прокладка, бесканальная прокладка, подвальная прокладка;
- *Izol_pod*, *Теплоизоляционный материал под*. *тр-да* (1- 39)-Задается теплоизоляционный материал подающего трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку • и в открывшемся меню выбрать требуемый пункт. Описание теплоизоляционных материалов приведено в <u>Приложении 3</u>;
- Izol_obr, Теплоизоляционный материал обр. тр-да (1- 39)-Задается теплоизоляционный материал обратного трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку • и в открывшемся меню выбрать требуемый пункт. Описание теплоизоляционных материалов приведено в <u>Приложении 3.</u>;
- Wizol_pod, Толщина изоляции подающего тр-да, м-Задается толщина изоляции подающего трубопровода, например 0.07, 0.1 м;

- Wizol_obr, Толщина изоляции обратного тр-да, м-Задается толщина изоляции обратного трубопровода, например 0.07, 0.1 м;
- *Tex_pod*, *Texническое состояние изоляции под.тp-да (1-8)* Задается только в том случае, если тепловые потери в трубопроводах тепловой сети определяются расчетным путем, а не по удельным нормативным показателям. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в <u>Приложении 3</u>;
- *Tex_obr*, *Texническое состояние изоляции обр.тр-да (1-8)* Задается только в том случае, если тепловые потери в трубопроводах тепловой сети определяются расчетным путем, а не по удельным нормативным показателям. При выполнении расчетов принимаются средние значения поправок к коэффициентам теплопроводности теплоизоляционных материалов приведенных в <u>Приложении 3</u>;
- Q1_pod, Дополнительные потери тепла под. тр-да, ккал-Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери подающего трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников;
- Q1_obr, Дополнительные потери тепла обр. тр-да, ккал- Наряду с тепловыми потерями через изоляцию, имеется возможность задавать дополнительные фиксированные тепловые потери обратного трубопровода. Эту возможность можно использовать, например, для моделирования отбора тепла в случае трубопроводов-спутников.

При подземной прокладке трубопровода:

- *S*, *Расстояние между осями трубопроводов*, м.- Задается расстояние между осью подающего и осью обратного трубопроводов в метрах;
- *Hzal*, *Глубина заложения трубопровода*, м.- Задается расстояние от оси трубопровода до поверхности земли, например 0.8, 1.0, 1.2 м. и т.д;
- Grunt, Вид грунта-Задается вид грунта в котором проложен участок трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку и в открывшемся меню выбрать требуемый пункт.

N п.п.	Вид грунта	Коэфа ност	Коэффициент теплопровод- ности грунтов Вт/(м * С)					
		сухого	влажного	водонасы- щенного				
		1	2	3				
1	Песок, супесь	1,10	1,92	2,44				
2	Глина, су- глинок	1,74	2,56	2,67				
3	Гравий, щебень	2,03	2,73	3,37				

При канальной прокладке дополнительно:

• *Hkanal*, *Высота канала*, *м*.- Задается пользователем в зависимости от марки канала и условного диаметра труб в соответствии с таблицей приложения <u>При-</u> <u>ложение D, Основные типы сборных железобетонных каналов для тепловой сети,</u> например для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м. высота канала 0.63 м;

• Wkanal, Ширина канала, м.- Задается пользователем в зависимости от марки канала и условного диаметра труб в соответствии с таблицей Приложения <u>Приложение D</u>, <u>Основные типы сборных железобетонных каналов для тепловой сети</u>, например для канала марки КЛ 90-45 при условном диаметре подающей и обратной трубы 0.1 м. ширина каналы 1.15 м.

7.4. Исходные данные для выполнения конструкторского расчета

Перед тем как приступить к конструкторскому расчету, сначала нужно занести следующую информацию по участкам и потребителям тепловой сети.

7.4.1. По потребителям

Независимо от того как будет проводиться расчет следует занести:

• *Hcon_ras*, *Pacполагаемый напор на вводе (констр)*, *м*-Задается величина располагаемого напора на вводе у потребителя, для конструкторского расчета.

Расчет может проводиться по известным расчётным расходам или по расчетным нагрузкам, подробнее об этом <u>Глава 12, *Конструкторский расчет*</u>

- Для выполнения расчета по известным расчетным расходам:
 - Gcon_so, Расчетный расход на СО (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему отопления;
 - Gcon_sv, Расчетный расход на СВ (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему вентиляции;
 - Gcon_gv, Расчетный расход на ГВС (констр), т/ч-Задается расчетный расход для конструкторского расчета на систему горячего водоснабжения.
- Для выполнения расчета по известным расчетным нагрузкам:
 - Qo_r, Расчетная нагрузка на отопление, Гкал/ч.-Задается расчетная нагрузка на отопление в соответствии с расчетными данными в Гкал/ч. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений Раздел 9.11, «Настройка используемых единиц измерения»;
 - Qsv_r, Расчетная нагрузка на вентиляцию, Гкал/ч.-Задается пользователем по проектным данным. При отсутствии проектных данных расчетные тепловые нагрузки на вентиляцию могут быть определены по наружному объему здания или поверхности нагрева теплопотребляющего оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений см. в разделе <u>Раздел 9.11</u>, «Настройка используемых единиц измерения»;
 - *Qgv_sred*, *Pacчетная средняя нагрузка на ГВС*, *Гкал/ч*-Задается пользователем по проектным данным в Гкал/ч. При отсутствии проектных данных

расчетные тепловые нагрузки на горячее водоснабжение могут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указаниями СНиП. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измерений см. в разделе <u>Раздел 9.11</u>, «Настройка используемых единиц измерения».

7.4.2. По участкам

Независимо от того как будет проводиться расчет следует занести:

- *L*, *Длина участка*, *м*-задается длина участка трубопровода в плане с учетом длины П-образных компенсаторов. Данное поле можно заполнить автоматически, взяв длину участка с карты в масштабе. <u>Раздел 19.1</u>, «Автоматическое занесение <u>длины с карты»</u>
- *Ke_con_pod*, Шероховатость подающего трубопровода (конструкторский), мм-Задается шероховатость подающего трубопровода для конструкторского расчета;
- *Ke_con_obr*, Шероховатость обратного трубопровода (конструкторский), мм-Задается шероховатость обратного трубопровода для конструкторского расчета;
- *Кz_pod*, Коэффициент местного сопротивления подающего трубопровода- Задается коэффициент местного сопротивления для подающего трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для подающего трубопровода будет задан равным 1.0, то действительная длина подающего трубопровода увеличена не будет;
- *Кz_obr*, Коэффициент местного сопротивления обратного трубопровода- Задается коэффициент местного сопротивления для обратного трубопровода, например 1.1 или 1.2. В этом случае действительная длина участка трубопровода будет увеличена на 10 или 20 % соответственно. Если коэффициент местного сопротивления для обратного трубопровода будет задан равным 1.0, то действительная длина обратного трубопровода увеличена не будет.

(i) Примечание

Если местные сопротивления неизвестны, то в этом случае пользователь может увеличить действительную длину трубопровода добавлением эквивалентной длины, характеризующей потери в местных сопротивлениях. Для этого следует задать для полей Коэффициент местного сопротивления под. тр-да. и Коэффициент местного сопротивления под. тр-да. значения от 1.05 до 1.2

Если вид местных сопротивлений и их количество известны, их следует указать с помощью справочника по местным сопротивлениям. Этот справочник заносится в поле *Местные сопротивления под.* (обр.) тр-да.

Zpod_str, Местные сопротивления под. тр-да – Задаются местные сопротивления, установленные на подающем трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе Раздел 20.5, «Справочник по местным сопротивлениям». Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений под. тр-да. Значения коэффициентов

местных сопротивлений приведены в таблице приложения <u>Приложение E, Коэффи</u>циенты местных сопротивлений на участке трубопровода;

• Zobr_str, Местные сопротивления обр. тр-да – Задаются местные сопротивления, установленные на обратном трубопроводе. Как работать со справочником по местным сопротивлениям см. в разделе <u>Раздел 20.5, «Справочник по местным сопротивлениям»</u>. Сумма всех сопротивлений, автоматически записывается в поле Сумма коэф. местных сопротивлений обр. тр-да. Значения коэффициентов местных сопротивлений приведены в таблице приложения <u>Приложение E, Коэффициенты местных сопротивлений на участке трубопровода</u>.

Как работать со справочником по местным сопротивлениям см. в разделе <u>Раз-</u> дел 20.5, «Справочник по местным сопротивлениям». Значения коэффициентов местных сопротивлений приведены в таблице приложения <u>Приложение E, Коэффи-</u> <u>циенты местных сопротивлений на участке трубопровода</u>. Сумма всех сопротивлений, автоматически записывается в поле *Сумма коэф*. местных сопротивлений (под) обр. тр-да.

(i) Примечание

Указывая местные сопротивления, установленные на сети следует, чтобы значения полей Коэффициент местного сопротивления подающего трубопровода и Коэффициент местного сопротивления обратного трубопровода были равными 1.

В зависимости от того, по какому параметру будет делаться расчет, следует занести оптимальные скорости или удельные линейные потери:

- Для выполнения расчета по оптимальной скорости:
 - Vopt_pod, Оптимальная скорость в подающем (конструкторский), м/с-Задается оптимальная скорость для подающего трубопровода данного участка;
 - Vopt_obr, Оптимальная скорость в обратном (конструкторский), м/с-Задается оптимальная скорость для обратного трубопровода данного участка.
- Для выполнения расчета по удельным линейным потерям:
 - dHud_con_pod, Удельные линейные потери подающего (конструкторский), мм/м-задаются удельные линейные потери для подающего трубопровода;
 - dHud_con_obr, Удельные линейные потери обратного (конструкторский), мм/м- задаются удельные линейные потери для обратного трубопровода.

7.5. Исходные данные для построения температурного графика

Исходные данные по объектам сети для расчета температурного графика должны быть внесены такие же, как и для поверочного расчета

7.6. Исходные данные для расчета нормативных потерь тепла за год

Целью данного расчета является определение тепловых потерь через изоляцию трубо-проводов в течение года.

Для учета работы трубопроводов в различные периоды (летний, зимний) для каждого участка тепловой сети в базе данных можно указать следующие поля:

- Use_pod, Период работы подающего тр-да-Выбирается пользователем из списка период работы трубопровода
- Use_obr, Период работы обратного тр-да-Выбирается пользователем из списка период работы трубопровода.

👔 Примечание

0 (Пусто)- Весь год.

- 1- Зимний период.
- 2- Летний период.

Для просмотра результатов расчета по различным владельцам (балансодержателям) для каждого участка тепловой сети в базе данных можно указать следующее поле:

• Owner, Балансодержатель-Указывается пользователем имя владельца (балансодержателя) участка тепловой сети, например МУП Теплоэнерго.

Также перед расчетом следует проверить данные по температурному графику и среднегодовые температуры

- 1. Среднегодовая температура наружного воздуха.
- 2. Среднегодовая температура воды в подающем и обратном трубопроводе.
- 3. Среднегодовая температура грунта.
- 4. Среднегодовая температура в подвальных помещениях.

-Графин	<			Средне	годовые		
Тнв	-30.0	Tco	150.0	Тнв	-30.0	Тгрунт	2
Тпод	150.0	Твв	20.0	Тпод	78	Тподв	10.0
Тобр	70.0			Тобр	47		

Рисунок 7.2. Исходные данные по среднегодовым температурам

(i) Примечание

Среднегодовые температуры и температуры графика (источника или ЦТП) считываются в момент запуска задачи и выборе необходимых источников. Но

после того как в окне расчета тепловых потерь происходит их изменение на новые значения и нажатие на кнопку Сохранить, они перестают считываться. Так как значения были изменены самостоятельно и программа уже не вмешивается. Этот принцип распространен и при дальнейшей работе.

Дополнительно следует занести среднемесячные температуры за каждый месяц:

- 1. Продолжительность отопительного и неотопительного (летнего) периода в течение каждого месяца. Ввод часов отопительного и летнего периода контролируется цветом. Больше- цвет красный, меньше- синий.
- 2. Среднемесячная температура наружного воздуха
- 3. Среднемесячная температура грунта.
- 4. Среднемесячная температура теплоносителя в подающем и обратном трубопроводах.
- 5. Средняя за месяц температура холодной воды.

Месяц	П	Про	Тнв	Тгр	Тпод	Тобр	Тхв
Январь	0	744	-12	1	108	57.38	5
	Л		-12				

Рисунок 7.3. Исходные данные по средним температурам за месяц

Глава 8. Испытательные параметры теплообменного аппарата

Для расчетов схем с теплообменными аппаратами при различных режимах, следует задать параметры теплообменника на какой-то известный режим. Это могут быть как проектные параметры, так и параметры, измеренные при испытании теплообменного аппарата. Назовем эти параметры испытательными.

Для задания теплообменника требуются следующие испытательные параметры:

- *T11* температура на входе первого контура;
- *T12* температура на выходе первого контура;
- *T21* температура на входе второго контура;
- *T22* температура на выходе второго контура;
- *Q*-тепловая нагрузка;
- *G1*-расход первого контура;
- *G2* расход второго контура.

В нашей модели нужно задавать значение *Q*, хотя измерить достаточно один из параметров *Q*, *G1* или *G2*, так как

 $Q = G1^{(T11-T12)}/1000 = G2^{(T22-T21)}/1000$

Зная перечисленные параметры для одного режима, можно при любом другом режиме работы теплообменного аппарата по четырем заданным параметрам, используя известные математические зависимости, вычислить для этого режима значения остальных параметров. Например, на графике показано, как изменение расхода в первом контуре влияет на изменение температур на выходе первого и второго контуров.

Используя испытательные параметры теплообменного аппарата, в расчете можно моделировать регулятор температуры, поддерживающий постоянную температуру воды на выходе второго контура при изменении температуры на входе первого контура.

8.1. Схемы с параллельным подключением теплообменника на ГВС

Расчет схем потребителей с параллельным подключением теплообменника на ГВС можно выполнять на:

- Жестко заданные испытательные параметры, «зашитые» в программе: T11 = 70, T12 = 30, а *T21* и *T22*берутся по значениям холодной и горячей воды, заданной на источнике;
- Параметры, которые пользователь сам может задавать на потребителе. Испытательные параметры теплообменного аппарата, температуру холодной и горячей воды, и подключать второй контур ГВС как без циркуляции, так и с циркуляцией.

При расчете с циркуляцией нужно дополнительно задать расчетный расход на циркуляцию, как долю в процентах от расчетного расхода на ГВС и расчетную температуру воды в циркуляционном контуре на выходе из потребителя.

Расчетный расход сетевой воды при работе с циркуляцией для того же теплообменного аппарата будет отличаться от расчетного расхода при работе без циркуляционной линии. Например, аппарат был рассчитан на следующие параметры:

Q = Qrв = 0.1 Гкал/час, T11 = 70 °C, T12 = 30 °C, Txв = T21 = 5 °C, Trв = T22 = 60 °C

Тогда без циркуляции G1 = 1000*Q/(T11-T12) = 2.5 т/час, Gгвс = G2 = 1000*Q/(T11-T12) = 1.82 т/час

Если циркуляционный расход равен 50% от расхода на ГВС и температура в циркуляционной линии Tц = 45 $^\circ \rm C$

 $G_{II} = 0.5*G_{\Gamma BC} = 0.91_{T/час}$

Потери тепла на циркуляцию Qu = Gu*(Тгв-Тц) = 0.014 Гкал/час

Расход второго контура ТО будет суммой расхода на ГВС и на циркуляцию

G2 = GII + GIBc = 2.73

Температура на входе второго контура ТО будет равна температуре смеси циркуляционной воды и подпитки холодной вводы.

 $T21 = (G_{\Gamma B}c^{*}T_{XB}+G_{II}^{*}T_{II})/G2 = 18.3$

 $Q = Q_{\Gamma B} + Q_{II} = 0.114$ Гкал/час

G1 = 3.29 T/yac

T.e. сетевой расход для того же TO при таких параметрах циркуляции увеличился на 32%

Примечание

В этом случае значения:

T11_i_niz- Исп. температура на входе 1 контура I ступени = 70,

T12_i_niz- Исп. температура на выходе 1 контура I ступени = 30, a T21_i_niz- Исп. температура на входе 2 контура I ступени и T22_i_niz- Исп. температура на выходе 2 контура I ступени будут браться по значениям холодной и горячей воды, заданным на источнике.

(i) Примечание

Желательно, чтобы потери напора соответствовали потерям напора при испытательном расходе первого контура. Рекомендуется все потери первого контура ТО при испытательном расходе целиком задавать в поле $Hsec_niz-$ Потери напора в одной секции I ступени, а в поля $Nsec_niz-$ Колво секции ТО на ГВС I ступень и Ngr_niz- Кол-во параллел групп ТО на ГВС I ступ. заносить единицу.

Глава 9. Настройки расчетов и вкладка Сервис

Перед выполнением любого расчета обязательно следует проверить параметры гидравлического расчета, так как их изменение может существенно повлиять на результаты.

Предупреждение

Для каждого слоя тепловой сети указываются свои собственные параметры расчета. Сохраняются данные настройки автоматически для каждого слоя отдельно.

Чтобы открыть диалог настройки расчетов выполните следующие действия:

1. Выполните команду главного меню Задачи|ZuluThermo, либо нажмите кнопку панели инструментов. Откроется панель выполнения теплогидравлических расчетов (см. <u>Рисунок 9.1, «Панель теплогидравлических расчетов»</u>).

ZuluTher	mo						_ • ×
Пример те	пловой сети	4					Слой
Наладка	Поверка	Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование
✔ С учет ✔ С учет ● По ● По ✔ Солла ☐ Диам конст расче	гом утечек гом тепловь о норм. поте о изоляции а и шайбы и: етры из рукторского та	их потерь рям з наладки р		ер тепловой сети еверная			
			Раскраска -	<нет>			¥
Расчет	- Ha	стройки	Справка	Закрыты			

Рисунок 9.1. Панель теплогидравлических расчетов

- 2. Нажмите кнопку Слой..., выберите слой тепловой сети в открывшемся диалоге и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;
- 3. Далее нажмите кнопку Настройки, откроется диалог настройки расчетов для выбранного слоя (см. <u>Рисунок 9.2</u>, «<u>Окно настроек расчетов</u>»).

Протокол расчета	Раскраска	ГBC	Исхо	дные данные	Надежн	юсть	Hasp
Тепловые потери	1 Поте	ри напор	ba	Теплоносит	гель	Ут	ечки
Коэффициент Коэффициен	местных тепл т местных теп	ювых пот повых по	терь (С отерь () <= 0.15 м) D > 0.15 м)	1.2 1.15		
Компенсира	овать потери (расходом	и для ц	јайбовых вводо	в 🗸		
	⊙д	ля всех г	тотреб	ителей			
	OK	роме пот	ребите	элей после ЦТГ	1		
	Максимальны	ый относі	ительн	ый расход 1.2	2		
	Справочник	по изол	яции т	рубопроводов			
	0	<u> </u>	011			Co	DORKO

Рисунок 9.2. Окно настроек расчетов

Настройка различных параметров расчетов подробно описывается в последующих подразделах.

9.1. Настройка расчета тепловых потерь

Параметры расчета тепловых потерь настраиваются во вкладке Тепловые потери диалога настройки расчетов (см. <u>Рисунок 9.3, «Диалог настройки расчетов. Вкладка «Тепловые потери»»</u>):

Протокол расчета	Раскраска	FBC	Исход	ные данные	Надежност	љ Назр
Тепловые потери	1 Поте	ери напор	a	Теплоноси	тель	Утечки
Коэффициент	местных тепл	ювых по	терь (D	<= 0.15 м)	1.2	
Коэффициен	г местных теп	ловых по	отерь (В	> 0.15 м)	1.15	
				· _		
Компенсиро	вать потери р	расходом	1 для ша	ибовых вводо	в 🗸	
	⊙д	ля всех г	тотреби	телей		
	OK	роме пот	ребите	ней после ЦТГ	1	
	Максимальны	ый относ	ительнь	ий расход 1.2	2	
	Справочник	с по изол	яции тр	убопроводов		

Рисунок 9.3. Диалог настройки расчетов. Вкладка «Тепловые потери»

- В полях Коэффициент местных тепловых потерь задаются коэффициенты местных тепловых потерь, учитывающие тепловые потери арматурой, компенсаторами, неподвижными опорами;
- При установленном флажке Компенсировать потери расходом для шайбовых вводов тепловые потери компенсируются увеличением расхода теплоносителя. Максимальное увеличение расхода задается в поле ниже;
 - Для всех потребителей- при установке данной опции, тепловые потери компенсируются для всех потребителей тепловой сети.
 - Кроме потребителей после ЦТП- при установке данной опции, тепловые потери для потребителей после ЦТП компенсироваться не будут.
- Например, при значение 1.2 в поле Максимальный относительный расход, расход теплоносителя может быть увеличен не более чем на 20%;
- С помощью кнопки в строке Справочник по изоляции трубопроводов, открывается справочник теплопроводности изоляционных материалов. Подробнее о работе со справочником Раздел 20.7, «Справочник по теплопроводности изоляции».

9.2. Настройка расчета потерь напора

Параметры расчета потерь напора теплоносителя задаются во вкладке Потери напора диалога настройки расчетов (см. <u>Рисунок 9.4, «Диалог настройки расчетов. Вкладка</u> <u>«Потери напора»»</u>).

Протокол расчета	Раскраска	ГВС	Исхол	ные да	нные	Належ	ность	Hasp
Тепловые потери	1 Поте	ри напор	a	Тепл	юносит	ель	Ут	ечки
Расчет коэффицие	нта гидравли	ческого т	рения п	ю форг	муле			
Колбрука-Уайта		*						
Максимальный на минимально необх	пор, гасимый юдимого)	соплом	(в долях	от	;	2		
Запас н	апора на запо	лнение с	истемы	.м		5		
Максимально допу	стимое давле	ение в об	ратнике	, м	6	D		
1	Минимальный	і диаметр	сопла,	мм	1	3		
M	Іинимальный	диаметр	шайбы,	мм	;	3		
 Корректировать 	ь номер элева	атора						
			0					

Рисунок 9.4. Диалог настройки расчетов. Вкладка «Потери напора»

• Формула для расчета коэффициента гидравлического трения выбирается в поле с соответствующим названием. Возможен расчет коэффициента трения по формулам Альтшуля, Шифринсона, Никурадзе, Кульбрука-Уайта.

- В поле Максимальный напор, гасимый соплом (в долях от минимально необходимого) задается максимальный избыточный напор который может быть погашен соплом элеватора. По умолчанию установлено значение 2, это значит, что соплом элеватора будет погашен напор, в два раза превышающий минимально необходимый.
- В поле Запас напора на заполнение системы, м задается запас напора на заполнение системы.
- В поле Максимально допустимое давление в обратнике, м указывается максимально допустимое давление в обратном трубопроводе. При его превышении, в результате расчета отображается предупреждающее сообщение.
- При установленном флажке Корректировать номер элеватора, оптимальный номер элеватора подбирается по следующей номограмме. (<u>Рисунок 9.5, «Номограмма для выбора элеватора</u>»).

Рисунок 9.5. Номограмма для выбора элеватора

- В поле Минимальный диаметр сопла задается минимальный диаметр подбираемого сопла элеватора.
- В поле Минимальный диаметр шайбы задается минимальный диаметр подбираемых дросселирующих шайб.

9.3. Выбор и настройка параметров теплоносителя

Тип используемого теплоносителя и его параметры задаются во вкладке Теплоноситель диалога настройки расчетов (см. <u>Рисунок 9.6, «Диалог настройки расчетов. Вклад-</u> ка «Теплоноситель»»).

	Гаскраска ГВС	Исходные да	нные Надежи	ность Has
Тепловые потери	и Потери напора	Тепл	оноситель	Утечки
Вода		∨ Реда	актировать	
Плотность воды в	подающем трубопрово	де (т/м3)	0.975	
Плотность воды в	з обратном трубопровод	це (т/м3)	0.975	
 В поверочном р 	асчете определять пло	тность по тем	пературе	
Температура полк	и,°С: 60			

Рисунок 9.6. Диалог настройки расчетов. Вкладка «Теплоноситель»

• В поле со списком в верхней части вкладки выбирается жидкость, которая является теплоносителем.

Параметры всех заведенных в систему теплоносителей хранятся в справочнике по теплоносителям. В справочник можно добавлять и удалять теплоносители, редактировать параметры уже заданных теплоносителей. Для редактирования справочника теплоносителей нажмите кнопку Редактировать справа от поля. Подробнее о работе со справочником Раздел 20.4, «Справочник по теплоносителям»;

- В полях Плотность воды в подающем и Плотность воды в обратном задается средняя плотность воды в подающем и обратном трубопроводах;
- При поверочном расчете программа сама может вычислить плотность теплоносителя в зависимости от температуры, для этого необходимо установить флажок Определять плотность по температуре;
- В поле Температура полки указывается температура полки, на которую производится наладка ГВС.

9.4. Настройка расчета утечек

Параметры расчета утечек задаются во вкладке Утечки диалога настройки расчетов.

Протокол расчета	Раскраска	FBC	Исхо	дные данные	Надежн	юсть Назр
Тепловые потери	и Поте	ери напор	ba	Теплоноси	тель	Утечки
Дог	ія утечки из те	епловой (сети	0.25 %		
доля утечки из	CACTEM TELLIO	norpeone	апион [0.20		

Рисунок 9.7. Диалог настройки расчетов. Вкладка «Утечки»

В полях Доля утечки из тепловой сети и Доля утечки из систем теплопотребления задаются доли (%) нормативных утечек из тепловой сети и систем теплопотребления, соответственно.

По умолчанию установлены нормируемые утечки составляющие 0,25% от объема тепловых сетей и систем теплопотребления. Подробнее о методике расчёта можно узнать в разделе: <u>Раздел 25.7</u>, «Расчёт нормативных утечек».

9.5. Настройка протоколирования расчета

Параметры ведения протокола расчетов задаются во вкладке Протокол расчета диалога настройки расчетов (см. <u>Рисунок 9.8, «Диалог настройки расчетов.</u> Вкладка «Протокол расчета».»).

	1 Пот	ери напора	Теплоноси	тель	Уте	чки
Протокол расчета	Раскраска	ГВС Исх	одные данные	Надежн	юсть	Hasp
 Не выводить пр Не выводить со Не выводить со Не выводить со Отключить расс Отключить расс Игнорировать со Включать в расс Датоматически 	хотокол расч хобщения о н хобщения об хобщения о в чет баланса и сообщения п чат тупики б изменять на	етов ЦТП ненайденых пол участках без уз зыключенных по по теплу и воде о источникам ез нагрузки аправления уча	ях результатов злов этребителях стков			
 Очищать поля с 	оъектов, не	связанных с ис				

Рисунок 9.8. Диалог настройки расчетов. Вкладка «Протокол расчета».

В закладке Протокол расчета можно задать опции протоколирования проведения расчетов.

- При установленном флажке Не выводить протокол расчетов ЦТП, в протоколе не выводятся данные расчета по всем ЦТП;
- При установленном флажке Не выводить сообщения о не найденных полях результатов, в протоколе не выводятся сообщения об отсутствующих полях в таблицах и базах данных по объектам;
- При установленном флажке Не выводить сообщения об участках без узлов, не выводятся предупреждения об участках не имеющих связи с объектом в начальном или конечном узле;
- При установленном флажке Не выводить сообщения о выключенных потребителях,
 не отображаются предупреждения наличии в сети потребителей не связанных с источниками;
- При установленном флажке Отключить расчет баланса по теплу и воде не выполняется проведение расчета баланса выработанного и затраченного количества тепла и теплоносителя;
- При установленном флажке Игнорировать сообщения по источникам расчет доводится до конца, вне зависимости от наличия неполадок на источнике;
- При установленном флажке Включать в расчет тупики без нагрузки выполняется расчет ветвей с участками, не оканчивающимися потребителями или перемычками. Определяются напоры в узлах этих ветвей. Если в кольце закрыта задвижка, то в результате записываются напоры с разных сторон задвижки. Температура в узлах тупиковых ветвей не определяется;
- При установленном флажке Автоматически изменять направления участков программа при завершении гидравлического расчета может автоматически изменять

направления участков в соответствии с направлением движения теплоносителя по подающему трубопроводу;

• При установленном флажке Очищать поля объектов, не связанных с источниками, у объектов не участвовавших в расчетах, данные во всех полях результатов обнуляются.

9.6. Настройка раскраски

Параметры отображения тематической раскраски участков трубопроводов после проведения расчетов задаются во вкладке Раскраска диалога настройки расчетов (см. <u>Рисунок 9.9, «Диалог настройки расчетов. Вкладка «Раскраска»»</u>). Подробнее о тематической раскраске <u>Раздел 23.1, «Раскраска с помощью встроенных фильтров»</u>.

Тепловые потери	1 Поте	ри напо	pa	Теплоноси	тель	Утечки
Протокол расчета	Раскраска	FBC	Исхо	дные данные	Надежно	сть Назр
Температура под	ающего тр-да	H	Напор в	в подающем тр	-де	
Температура обр	атного тр-да		Напор	в обратном тр-	де	
Скорость тепл	оносителя		Распо	лагаемый напо	p	
Время движения	от источника		Уде	льные потери		
Длина пути от	источника					

Рисунок 9.9. Диалог настройки расчетов. Вкладка «Раскраска»

9.7. Настройка расчета ГВС

Параметры расчетов потребления горячей воды задаются во вкладке ГВС диалога настройки расчетов (см. <u>Рисунок 9.10</u>, «<u>Диалог настройки расчета. Вкладка «ГВС»</u>.»).

Termobble no repr	и Потеј	ри напора	Теплонос	итель	Утечки
Протокол расчета	Раскраска	LBC 1	Исходные данные	Надежно	ость Назр
Учитывать неравн	юмерность по	требления	горячей воды		1
Наладочный	пасчет	Расчет	тная нагрузка:		
Поверочный	расчет		Лаксимальная		
Конструктор	оский расчет	ŏ	редняя		
Козффициенты	часовой нера	вномернос	ти		
CE41 101 05				1	
CT141-101-95			 Просмотр 		
					1
Наладка последов	ательных схег	и на отог	чительный расход	. v	
Брать долю на цир	куляцию по с	среднему р	расходу на ГВС	~	

Рисунок 9.10. Диалог настройки расчета. Вкладка «ГВС».

 В группе настроек Учитывать неравномерность потребления горячей воды задаются параметры учета неравномерности потребления горячей воды. Коэффициент часовой неравномерности потребления горячей воды рассчитывается в зависимости от количества жителей, которое необходимо указать при заполнении исходной информации по потребителям тепловых сетей.

Флажками Наладочный расчет, Поверочный расчет, Конструкторский расчет указываются типы расчетов в которых учитывается неравномерность потребления.

В группе настроек Расчетная нагрузка указывается какая нагрузка на ГВС используется пользователем при вводе данных. Нагрузка указывается у потребителя в поле Qgv_sred, Расчетная нагрузка на ГВС, Гкал/ч.

В поле со списком Коэффициенты часовой неравномерности выбирается нормативный документ на основе которого рассчитывается коэффициент – СНиП 2.04.02-84, СП41-101-95, Вологодская РЭК. Графики зависимостей коэффициента от числа жителей можно просмотреть, нажав кнопку Просмотр справа от поля (см. <u>Рисунок 9.11, «Коэффициенты часовой неравномерности»</u>).

Настройки расчетов и вкладка Сервис

Рисунок 9.11. Коэффициенты часовой неравномерности

- В поле со списком Наладка последовательных схем на выбирается способ проведения наладки: на отопительный расход, или на суммарный расход на СО и ГВС. Требуемый способ выбирается пользователем в зависимости от использованной методики подбора поверхности нагрева теплообменных аппаратов;
- В поле со списком Брать долю на циркуляцию выбирается величина, от которой рассчитывается доля циркуляция воды (от среднего расхода воды на ГВС, или от средней тепловой нагрузки на ГВС, <u>Раздел 9.7.1, «Задание способа вычисления цирку-</u> <u>ляционного расхода воды на ГВС»</u>). Выбранная величина вводится в поле *Ксirc*базы по потребителям.

9.7.1. Задание способа вычисления циркуляционного расхода воды на ГВС

В предыдущих версиях ZuluThermo доля циркуляции воды на ГВС задавалась как доля от расчетного расхода воды на ГВС в процентах (расчетный расход воды вводился в поле *Kcirc* базы по потребителям).

 $G_{circ} = 0.01 * K_g * Q_{gv} * C/(T_{gv} - T_{hv}), (1)$ где

 $K_g\mathchar`$ доля от расхода на ГВС в процентах

G_{circ}- расход на циркуляцию

 $Q_{\rm gv}$ - тепловая нагрузка на ГВС

С- удельная теплоемкость

Т_{дv}- температура горячей воды

T_{hv}- температура холодной воды

Пользователи, привыкшие брать долю воды на ГВС в **процентах от тепловой нагруз**ки на ГВС, должны были перед занесением исходных данных в поле *Kcirc* делать несложный пересчет исходя из того, что
$G_{circ} = 0.01 * K_q * Q_{gv} * C / (T_{gv} - T_{circ}), (2)$ где

К_q- доля от нагрузки на ГВС в процентах

T_{circ}- температура воды на выходе из циркуляционной линии

В ZuluThermo 7.0 пользователь сам может назначать, какая именно доля будет браться для вычисления циркуляционного расхода из поля *Kcirc*: доля расхода на ГВС (1) или доля от нагрузки на ГВС (2)

По умолчанию, для совместимости с предыдущими данными, программа ведет расчет по первой формуле.

9.8. Настройка использования исходных данных

Параметры исходных данных используемых для расчетов задаются во вкладке Исходные данные диалога настройки расчетов (см. <u>Рисунок 9.12, «Диалог настройки расчета.</u> Вкладка «Исходные данные»»).

Тепловые потери Потери напора Теплоноситель						
Протокол расчета	Раскраска ГВС Исх	аскраска ГВС Исходные данные Надежно		Hasp		
✓ Принимать по уг длиной не боле Типовые объекты д	иолчанию данные для учас е м ля участков: 6	тков				
2		2				
Заданная температ Наладочный р	ура обратной воды для обс расчет расчет	общенных потре	бителей			

Рисунок 9.12. Диалог настройки расчета. Вкладка «Исходные данные»

- При установленном флажке Принимать по умолчанию данные для участков в расчетах не учитываются участки, длина которых не превышает значение указанное в поле длиной не более. Кроме того, для таких участков не требуется заносить дополнительную информацию;
- В поле Типовые объекты для участков через точку с запятой указываются ID типов объектов структуры слоя, которые являются участками тепловой сети (например 6;14;25). Это позволяет разносить по типам трубопроводы разного назначения (участки магистрали, участки ГВС и т.д);

 Для построения более адекватной модели при использовании обобщенных потребителей (ОП) доступна возможность задания пользователем температуры воды на выходе из обобщенного потребителя. Для учета фактической температуры воды в обратном трубопроводе в наладочном или поверочном расчетах, следует установить флажок напротив нужного пункта.

9.9. Настройка расчета надежности

Настройки протокола расчета надежности задаются во вкладке Надежность диалога настройки расчетов (см. <u>Рисунок 9.13, «Диалог настройки расчета. Вкладка «Надежность».»</u>).

Гепловые потер	и Поте	ри напора	Теплонос	итель У	гечки
Протокол расчета	Раскраска	LLBC	Исходные данные	Надежность	Has
Расчетный год: Текущий Год: 2014 Протокол расчет Выводить ин Выводить ин Выводить ин	та нформацию по D объектов,	авариям для которы	юх авария привела	ак отказу	
✓ Вывод	ить Q относит	ельное по (отказавшим объе	стам	ия

Рисунок 9.13. Диалог настройки расчета. Вкладка «Надежность».

В данном окне можно настроить следующие опции протоколирования расчета.

- Расчетный год для определения периода эксплуатации трубопроводов можно установить как Текущий или задать самостоятельно в поле Год.
- При установленной опции Выводить информацию по авариям в протокол расчета выводится информация по авариям.
- При установленной опции Выводить ID объектов, для которых авария привела к отказу в протокол расчета выводится список объектов, для которых авария привела к отказу.
- Установив опцию Выводить Q относительное по отказавшим объектам, в протокол расчета будет выводиться относительное количество тепла по отказавшим объектам.

9.10. Настройка HASP

Настройка опроса сетевого ключа HASP выполняется во вкладке HASP диалога настройки расчетов (см. <u>Рисунок 9.14</u>, «<u>Диалог настройки расчета</u>. <u>Вкладка Hasp</u>.»). Функция включается/выключается установкой/снятием флажка Производить опрос сетевого ключа.

0

Предупреждение

Флажок обязательно должен быть установлен при использовании сетевого ключа, в противном случае расчет производиться не будет. При использовании локального ключа, данный флажок обязательно должен быть снят.

Параметры гидравлического расчета							
Тепловые потери	1 Поте	ри напор	а	Теплоноси	тель	Ут	ечки
Протокол расчета	Раскраска	скраска ГВС Исходные данные Надежн		ность	Hasp		
∎ производить ог	прос сетевого	ключа					
	OK	(Отм	1ена При	менить	Сп	равка

Рисунок 9.14. Диалог настройки расчета. Вкладка Наѕр.

9.11. Настройка используемых единиц измерения

Нагрузку можно заносить как в Гкал/ч, так и в МВт. Для выбора используемых единиц измерения нагрузок:

- 1. Откройте диалог ZuluThermo, выполнив команду главного меню Задачи|ZuluThermo или нажав кнопку ^{Са} панели инструментов;
- 2. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;
- 3. Откройте вкладку Сервис диалога ZuluThermo и нажмите кнопку Единицы измерения. Откроется диалог выбора единиц измерения (см. <u>Рисунок 9.15, «Окно переключения единиц измерения.»</u>);

Настройки расчетов и вкладка Сервис

Единицы измерения						
Тепловые нагрузки	Гкал/час \vee	Отмена				

Рисунок 9.15. Окно переключения единиц измерения.

4. Выберите требуемые единицы измерения нагрузок в поле Тепловые нагрузки и нажмите кнопку ОК.

9.12. Вкладка Сервис

Вкладка Сервис панели теплогидравлических расчетов представлена на следующем рисунке.

ZuluThermo Пример тепловой сети	_ ^ × Слой
Наладка Поверка Температурн	ый график Конструкторский Надежность Сервис Оборудование
Длины участков с карты	Создать новую сеть
Отметки высот с карты	Обновить структуры таблиц
Начала и концы участков	Добавить поля по надежности
Калькулятор	Единицы измерения
	Расчет тепловых потерь
Расчет Настройки	Справка Закрыть

Рисунок 9.16. Диалог настройки расчета. Вкладка Сервис

На данной вкладке расположены следующие кнопки:

- Длины участков с карты- кнопка для считывания длины участков с карты. Подробнее смотрите раздел <u>Раздел 19.1, «Автоматическое занесение длины с карты»</u>
- Отметки высот с карты- кнопка для считывания геодезических отметок со слоя рельефа. Подробнее смотрите раздел <u>Раздел 19.3, «Автоматическое занесение геодезических отметок объектов сети со слоя рельефа»</u>
- Начала и концы участков- кнопка для считывания имени начала и конца участков. Подробнее смотрите раздел <u>Раздел 19.2, «Автоматическое занесение начала и конца</u> <u>участков»</u>

- Создать новую сеть- кнопка создания нового слоя тепловой сети
- Обновить структуры таблиц- кнопка обновления структуры таблиц (после обновлений). Подробнее смотрите раздел <u>Глава 26, Обновления ПО и настройка защиты</u> <u>HASP</u>
- Добавить поля по надежности- кнопка добавление полей, необходимых для расчета надежности. Подробнее смотрите раздел <u>Раздел 15.3.1, «Добавление полей в базы</u> данных»
- Единицы измерения- кнопка смены единиц измерения. Подробнее смотрите раздел <u>Раздел 9.11, «Настройка используемых единиц измерения»</u>
- Расчет тепловых потерь- кнопка запуска расчета годовых нормативных тепловых потерь. Подробнее смотрите раздел <u>Глава 14</u>, *Расчет годовых нормируемых потерь через тепловую изоляцию*.

Глава 10. Наладочный расчет

10.1. Цель расчета

Целью наладочного расчета является качественное обеспечение всех потребителей, подключенных к тепловой сети необходимым количеством тепловой энергии и сетевой воды, при оптимальном режиме работы системы централизованного теплоснабжения в целом.

В результате наладочного расчета определяются номера элеваторов, диаметры сопел и дросселирующих устройств (для потребителей, ЦТП и кустовых шайб), а также места их установки.

Предупреждение

Наладочный расчет- это условный расчетный прием для подбора смесительных и дросселирующих устройств и определения мест их установки. Целью проведения наладочных расчетов является распределение теплоносителя между потребителями в строгом соответствии с их тепловой нагрузкой.

Расчет проводится с учетом различных схем присоединения потребителей к тепловой сети и степени автоматизации подключенных тепловых нагрузок. При этом на потребителях могут устанавливаться регуляторы расхода, нагрузки и температуры. На тепловой сети могут быть установлены насосные станции, регуляторы давления, регуляторы расхода, кустовые шайбы и перемычки.

10.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. <u>Рисунок 10.1, «Знакомство с панелью расчетов»</u>).

	ZuluThermo					_ • ×		
	Пример тепловой сети Слой							
0	Наладка Поверка Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование		
2	 С учетом ГВС С учетом тречек. С учетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора Дроссельными шайбами Соплом элеватора 	□- Приме □- У Се 	р тепловой сети верная ГП-1 ГП-3 тельная Западная				-6	
3		Раскраска <н	iet>			~	-7	
4	Расчет Настройки	Справка	Закрыты					

Рисунок 10.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета.
- 2. Выбор параметров расчета.

- 3. Кнопка для открытия окна настроек расчетов.
- 4. Кнопка запуска расчета.
- 5. Кнопка выбора слоя.
- 6. Окно выбора источника для расчета.
- 7. Выбор встроенных тематических раскрасок для анализа расчета.

10.3. Запуск расчета

Важно

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (Глава 9, *Настройки расчетов и вкладка Сервис*).

Для запуска наладочного расчета:

1. Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. Откроется диалог теплогидравлических расчетов (см. <u>Рису-</u>нок 10.2, «Вкладка «Наладка» диалога теплогидравлических расчетов»).

ZuluThermo					_ • ×
					Слой
Наладка Поверка Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование
 Сучетом ГВС Сучетом угечек Сучетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора Дроссельными шайбами Соплом элеватора 					
	Раскраска	(нет)			~
Расчет Настройки	Справка	Закрыты			

Рисунок 10.2. Вкладка «Наладка» диалога теплогидравлических расчетов

- 2. Перейдите на вкладку Наладка;
- Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. <u>Рисунок 10.3, «Окно выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;

Кварталы	от 🕛 🏸 💇 — <u>Н</u> азад
Здания Надписи	С С У Э С С У Э С С У Э Вперед
Іример тепловой сети	Ф 🚺 🌶 💇 Добавить
	Исключить
	Настройка.
	Структура
	Клавиша
	ОК
	Отмена
	Справка

Рисунок 10.3. Окно выбора слоя

4. Отметьте источник, для которого будет производиться расчет и установите флажок напротив соответствующего названия. (см. <u>Рисунок 10.4</u>, <u>«Выбор источника</u> <u>для расчета»</u>)

ZuluThermo					>
Пример тепловой сети					Слой
Наладка Поверка Тем	пературный график	Конструкторский	Надежность	Сервис	Оборудование
 С учетом ГВС С учетом утечек С учетом тепловых пот По норм. потерям По изоляции Гашение избыточного наг Дроссельными шайбаа Соплом элеватора 	ерь Прим • С • С • С • С • С • С • С • С	нер тепловой сети јеверная Јжная ТЭЦ ЦТП Азропорт ЦТП ул. Воронежска ЦТП район Ленинск.	ая 33 ий		
	Раскраска -	<нет>			~
Расчет Настрой	ки Справка	Закрыты			

Рисунок 10.4. Выбор источника для расчета

- 5. В левой части диалогового окна задайте параметры проводимого расчета, установив флажки напротив необходимых параметров:
 - С учетом ГВС- учитывать или не учитывать открытое ГВС в наладочном расчете;
 - С учетом утечек- проводить ли расчет с учетом нормативных утечек в тепловой сети;
 - С учетом тепловых потерь- проводить ли расчет с учетом тепловых потерь. Дополнительно требуется выбрать способ учета: с учетом нормативных тепловых потерь или потерь через изоляцию;

- Гашение избыточного напора с помощью дроссельных шайб или сопла элеватора.
- 6. Нажмите кнопку Расчет.

Если в ходе занесения исходной информации какие-либо данные необходимые для расчета не были внесены или внесены неверно, то при проведении расчетов в окне сообщений программа выдаст уведомление об ошибке <u>Рисунок 10.5, «Ошибка при за-</u><u>пуске расчета»</u> (красным цветом). Программа следит не только за наличием необходимой информации, но и за ее логической верностью, то есть, если Вы впишете диаметр участка более 1.4 м, то программа выдаст ошибку.

Рисунок 10.5. Ошибка при запуске расчета

- 1. Окно Сообщения
- 2. Сообщение об ошибке
- 3. Окно базы данных объекта, у которого обнаружена ошибка
- 4. Поле базы данных с ошибочным значением
- 5. Объект с ошибкой в данных

При отсутствии ошибок в данных или конфигурации сети программа выполнит расчет выбранной сети и заполнит результаты расчета в таблицы для каждого типа объекта тепловой сети. Протокол расчета будет отображаться в нижней части экрана в панели Сообщения. В случае ошибок они в протоколе будут выделены красным цветом (более подробно о возможных ошибках Глава 18, Возможные ошибки расчетов).

10.4. Результаты наладочного расчета

Всю информацию по объектам можно:

- 1. Отобразить на карте (Глава 22, *Отображение семантической информации на кар-<u>me</u>)*
- 2. экспортировать в HTML или Excel (Подробнее о экспорте можно узнать в справочном пособии по работе с ГИС Zulu, в разделе «Семантические базы данных»);
- 3. распечатать (Подробнее о печати можно узнать в справочном пособии по работе с ГИС Zulu, в разделе «Печать»).

(i) Примечание

Поля результатов расчета и исходных данных можно посмотреть в табличном виде в разделе <u>Глава 24</u>, *Таблицы баз данных элементов тепловой сети*

По результатам наладочного расчета определяется следующая информация:

10.4.1. По всем объектам

- 1. *T1_t*, *Температура воды в под. тр-де*, *°С*-В результате расчета определяется температура воды в подающем трубопроводе по всем объектам тепловой сети, (по участкам- в начале и конце трубопровода);
- 2. *T2_t*, *Температура воды в обр. тр-де*, *°С*-В результате расчета определяется температура воды в обратном трубопроводе, (по участкам- в начале и конце трубопровода);
- 3. Gsum_pod, Суммарный расход сетевой воды, т/ч-В результате расчета определяется суммарный расход сетевой воды (по участкам- в подающем и обратном трубопроводах);
- Hras, Располагаемый напор, м- В результате расчета определяется располагаемый напор во всех объектах тепловой сети, (кроме участков). По насосным станциям и дросселирующим узлам определяется до узла и после, для ЦТП для первого и второго контура);
- 5. *H_obr*, *Напор* в обратном тр-де, *м*-В результате расчета определяется напор в обратном трубопроводе во всех объектах тепловой сети (по насосным станциям и дросселирующим узлам определяется до узла и после, по ЦТП для первого и второго контура);
- 6. *Ррод*, Давление в подающем- В результате расчета определяется давление в подающем трубопроводе во всех объектах тепловой сети (по насосным станциям и дросселирующим узлам определяется до узла и после);
- 7. Pobr, Давление в обратном- В результате расчета определяется давление в обратном трубопроводе во всех объектах тепловой сети (по насосным станциям и дросселирующим узлам определяется до узла и после);
- 8. Тіте, Время прохождения воды от источника, мин-В результате расчета определяется время прохождения воды от источника до каждого объекта тепловой сети (кроме участков);
- 9. Dist, Путь, пройденный от источника, м-В результате расчета определяется протяженность пути пройденного теплоносителем от источника до каждого объекта тепловой сети (кроме участков);

- 10.*Tb*, Давление вскипания, м-В результате расчета определяется давление в каждом объекте тепловой сети, при котором может произойти вскипание теплоносителя (кроме участков);
- 11.*Hstat*, *Статический напор*, *м* В результате расчета определяется значение статического напора в каждом объекте тепловой сети (кроме участков).

10.4.2. По источнику

- 1. *Ht_ras, Текущий располаг. напор на выходе из источника, м*-В результате расчета определяется текущий располагаемый напор на выходе из источника, в зависимости от режима работы источника может быть определено новое значение данной величины, в сети с несколькими источниками;
- 2. *Ht_obr*, *Текущий напор в обратн*. *тр-де на источнике*, *м*-В результате расчета определяется текущий напор в обратном трубопроводе на источнике, в зависимости от режима работы источника может быть определено новое значение данной величины, в сети с несколькими источниками;
- 3. Qo_r, Расчетная нагрузка на отопление, Гкал/ч (МВт)-В результате расчета определяется расчетная нагрузка на отопление, как сумма всех расчетных нагрузок на отопление подключенных к данному источнику;
- 4. Qsv_r, Расчетная нагрузка на вентиляцию, Гкал/ч (МВт)-В результате расчета определяется расчетная нагрузка на вентиляцию, как сумма всех расчетных нагрузок на вентиляцию подключенных к данному источнику;
- 5. Qgv_r, Расчетная нагрузка на ГВС, Гкал/ч (МВт)-В результате расчета определяется расчетная нагрузка на горячее водоснабжение, как сумма всех расчетных нагрузок на системы горячего водоснабжения подключенных к данному источнику;
- 6. Qo_t, Текущая нагрузка на отопление, Гкал/ч (МВт)-В результате расчета определяется текущая нагрузка на отопление, как сумма всех текущих нагрузок на отопление подключенных к данному источнику;
- 7. Qsv_t, Текущая нагрузка на вентиляцию, Гкал/ч (МВт)-В результате расчета определяется текущая нагрузка на вентиляцию, как сумма всех текущих нагрузок на вентиляцию подключенных к данному источнику;
- 8. Qgv_t, Текущая нагрузка на ГВС, Гкал/ч (МВт) В результате расчета определяется текущая нагрузка на горячее водоснабжение, как сумма всех текущих нагрузок на системы горячего водоснабжения подключенных к данному источнику;
- 9. Qsum, Суммарная тепловая нагрузка, Гкал/ч (МВт) В результате расчета определяется суммарная тепловая нагрузка;
- 10.*Трод*, *Температура на выходе из источника* В результате расчета определяется температура на выходе из источника. Например, она может быть меньше расчетной, при условии, что установленная тепловая мощность меньше подключенной нагрузки.
- 11.*T2_t*, *Текущая температура воды в обратном тр-де*, °*C*-В результате расчета определяется температура воды поступающая по обратном трубопроводу, из тепловой сети к источнику.

- 12.*Gso*, *Расход сетевой воды на СО*, *т/ч*-В результате расчета определяется расход сетевой воды на систему отопления;
- 13.Gsv, Расход сетевой воды на СВ, т/ч-В результате расчета определяется расход сетевой воды на систему вентиляции;
- 14.*Ggv*, *Расход сетевой воды на ГВС*, *т/ч*-В результате расчета определяется расход сетевой воды на систему горячего водоснабжения;
- 15.Gsum_pod, Суммарный расход сетевой воды в под.тр, т/ч-В результате расчета определяется суммарный расход воды в подающем трубопроводе.
- 16.Gut_pot, Расход воды на утечку из сис.теплопотреб, т/ч-В результате расчета определяется расход воды на утечки из систем теплопотребления;
- 17.*Gpodpit*, *Расход воды на подпитку*, *т/ч*-В результате расчета определяется расход воды на подпитку;
- 18.Gut_pod, Расход сетевой воды на утечку из под.тр, т/ч-В результате расчета определяется расход сетевой воды на утечки из подающих трубопроводов;
- 19.Gut_obr, Расход сетевой воды на утечку из обр.тр, т/ч-В результате расчета определяется расход сетевой воды на утечки из обратных трубопроводов;
- 20.Qpot_ts, Тепловые потери в тепловых сетях, Гкал/ч (МВт)-В результате расчета определяется величина тепловых потерь в тепловых сетях.

10.4.3. По потребителям

- 1. Nel_r, Рекомендуемый номер элеватора В результате расчета определяется рекомендуемый номер элеватора;
- 2. Dsop_r, Рекомендуемый диаметр сопла элеватора, мм-В результате расчета определяется рекомендуемый диаметр сопла элеватора;
- 3. Ucalc, Расчетный коэффициент смешения- В результате расчета определяется расчетный коэффициент смешения;
- 4. *Gso*, *Расход сетевой воды на СО*, *т/ч*-В результате расчета определяется расход сетевой воды на систему отопления;
- Gso_otn, Относительный расход воды на СО, т/ч-В результате расчета определяется относительный расход сетевой воды на систему отопления (отношение фактического расхода к расчетному);
- 6. Относительная нагрузка на систему отопления- В результате расчета определяется относительная нагрузка на систему отопления (отношение текущей нагрузки к расчетной);
- 7. *T3so_t*, *Температура воды на входе в СО*, *°С*-В результате расчета определяется фактическая температура воды на входе в систему отопления;
- 8. *T2so_t*, *Температура воды на выходе из СО*, *°С*-В результате расчета определяется фактическая температура воды на выходе из системы отопления;

- 9. *Tvso_t*, *Температура внутреннего воздуха СО*, °С-В результате расчета определяется фактическая температура воздуха в помещении;
- 10.Dshb_so_pod, Диаметр шайбы на под. тр-де перед СО, мм-В результате расчета определяется диаметр шайбы на подающем трубопроводе перед системой отопления;
- 11.Nshb_so_pod, Количество шайб на под. тр-де перед СО, шт.-В результате расчета определяется количество шайб на подающем трубопроводе перед системой отопления;
- 12.Dshb_so_obr, Диаметр шайбы на обр. тр-де после СО, мм-В результате расчета определяется диаметр шайбы на обратном трубопроводе перед системой отопления;
- 13.Nshb_so_obr, Количество шайб на обр. тр-де после СО, шт-В результате расчета определяется количество шайб на обратном трубопроводе перед системой отопления;
- 14.dHshb_so_pod, Потери напора на шайбе под.тр-да перед СО, м-В результате расчета определяется значение потерь напора на шайбе на подающем трубопроводе перед системой отопления;
- 15.dHshb_so_obr, Потери напора на шайбе обр.тр-да после СО, м-В результате расчета определяется значение потерь напора на шайбе на обратном трубопроводе перед системой отопления;
- 16.Dshb_pod, Диаметр шайбы на вводе на под.тр-де, мм-В результате расчета определяется диаметр шайбы на вводе на подающем трубопроводе;
- 17.Nshb_pod, Количество шайб на вводе на под. тр-де, шт-В результате расчета определяется количество шайб на вводе на подающем трубопроводе перед системой отопления;
- 18.Dshb_obr, Диаметр шайбы на вводе на обр. тр-де, мм-В результате расчета определяется диаметр шайбы на вводе на обратном трубопроводе;
- 19.Nshb_obr, Количество шайб на вводе на обр. тр-де, шт-В результате расчета определяется количество шайб на вводе на обратном трубопроводе перед системой отопления;
- 20.Gsv, Расход сетевой воды на СВ, т/ч-В результате расчета определяется расход сетевой воды на систему вентиляции;
- 21.Gsv_otn, Относительный расход воды на CB, т/ч-В результате расчета определяется относительный расход сетевой воды на систему вентиляции (отношение фактического расхода к расчетному);
- 22.72sv_t, Темп. воды после системы вентиляции, °С-В результате расчета определяется фактическая температура воды после системы вентиляции;
- 23.Tvsv_t, Температура внутреннего воздуха СВ, °С-В результате расчета определяется фактическая температура внутреннего воздуха для системы вентиляции;

- 24.Dshb_sv, Диаметр шайбы на систему вентиляции, мм- В результате расчета определяется диаметр шайбы на систему вентиляции;
- 25.Nshb_sv, Количество шайб на систему вентиляции, шт-В результате расчета определяется количество шайб на систему вентиляции;
- 26.Ggv, Расход сетевой воды на ГВС, т/ч-В результате расчета определяется расход сетевой воды на систему горячего водоснабжения;
- 27.Gcirc, Расход сетевой воды в цирк. трубопроводе, т/ч-В результате расчета определяется расход воды в циркуляционном трубопроводе;
- 28.Dshb_gvs, Диаметр шайбы на вводе ГВС, мм- В результате расчета определяется диаметр шайбы на систему горячего водоснабжения;
- 29.Nshb_gvs, Количество шайб на вводе ГВС, шт.- В результате расчета определяется количество шайб на систему горячего водоснабжения;
- 30.Dshb_circ, Диаметр циркуляционной шайбы на ГВС, мм-В результате расчета определяется диаметр циркуляционной шайбы на систему горячего водоснабжения;
- 31.Nshb_circ, Количество циркуляционных шайб на ГВС, шт.-В результате расчета определяется количество циркуляционных шайб на систему горячего водоснабжения;
- 32.Gniz, Расход 1 контура I ступени ТО ГВС, т/ч-В результате расчета определяется расход сет.воды, затек. в первую ступень ТО ГВС;
- 33.G2_niz, Расход 2 контура I ступени ТО ГВС, т/ч-В результате расчета определяется расход горячей воды во втором контуре;
- 34.Q_піz, Тепловая нагрузка І ступени, Гкал/ч (МВТ) В результате расчета определяется тепловая нагрузка І ступени ТО на ГВС;
- 35.711_niz, Температура на входе 1 контура I ступени, °С-В результате расчета определяется температура на входе 1 контура I ступени ТО на ГВС;
- 36.*T12_niz*, *Температура на выходе 1 контура I ступени*, °*C*-В результате расчета определяется температура на выходе 1 контура I ступени ТО на ГВС;
- 37.721_niz, Температура на входе 2 контура I ступени, °С-В результате расчета определяется температура на входе 2 контура I ступени ТО на ГВС;
- 38.3T22_niz, Температура на выходе 2 контура I ступени, °С-В результате расчета определяется температура на выходе 2 контура I ступени ТО на ГВС;
- 39.711_verh, Температура на входе 1 контура II ступени, °С-В результате расчета определяется температура на входе 1 контура II ступени ТО на ГВС;

- 40.*T12_verh*, *Температура на выходе 1 контура II ступени*, °*С*-В результате расчета определяется температура на выходе 1 контура II ступени ТО на ГВС;
- 41.721_verh, Температура на входе 2 контура II ступени, °С-В результате расчета определяется температура на входе 2 контура II ступени ТО на ГВС;
- 42.722_verh, Температура на выходе 2 контура II ступени, °С-В результате расчета определяется температура на выходе 2 контура II ступени ТО на ГВС;
- 43.Gverh, Расход 1 контура II ступени ТО ГВС, т/ч-В результате расчета определяется расход сет.воды, затек. во вторую ступень ТО ГВС;
- 44.G2_verh, Расход 2 контура II ступени ТО ГВС, т/ч-В результате расчета определяется расход горячей воды во втором контуре II ступени;
- 45.Q_verh, Тепловая нагрузка II ступени, Гкал/ч (МВт)-В результате расчета определяется тепловая нагрузка II ступени ТО на ГВС;
- 46.Gset_nal, Расход сетевой воды на СО после наладки, т/ч-В результате расчета определяется расход сетевой воды на систему отопления после наладки;
- 47.Gut_pot, Утечка из системы теплопотребления, т/ч-В результате расчета определяется величина утечек из систем теплопотребления;
- 48.Qut_pot, Потери тепла от утечки, Ккал-В результате расчета определяется величина потерь тепла от утечек;
- 49.*Hset_nal*, *Heoбходимый располагаемый напор для CO*, *м*-Врезультате расчета определяется необходимый располагаемый напор для системы отопления.

10.4.4. По участкам

- 1. *dH_pod*, Потери напора в подающем трубопроводе, м- В результате расчета определяется величина потерь напора в подающем трубопроводе;
- 2. *dH_obr*, Потери напора в обратном трубопроводе, *м* В результате расчета определяется величина потерь напора в обратном трубопроводе;
- dHud_pod, Удельные линейные потери напора в под.тр-де, мм/ м- В результате расчета определяется величина удельных линейных потерь напора в подающем трубопроводе;
- 4. dHud_obr, Удельные линейные потери напора в обр.тр-де, мм/ м- В результате расчета определяется величина удельных линейных потерь напора в обратном трубопроводе;
- 5. Vpod, Скорость движения воды в под. тр-де, м/с-В результате расчета определяется скорость движения воды в подающем трубопроводе;
- 6. Vobr, Скорость движения воды в обр. тр-де, м/с-В результате расчета определяется скорость движения воды в обратном трубопроводе;

- 7. Gut_pod, Величина утечки из подающего трубопровода, т/ч-В результате расчета определяется величина утечек из подающего трубопровода;
- 8. Gut_obr, Величина утечки из обратного трубопровода, т/ч-В результате расчета определяется величина утечек из обратного трубопровода;
- 9. Qpot_pod, Тепловые потери в подающем трубопроводе, ккал/ч (Вт)-В результате расчета определяется величина тепловых потерь в подающем трубопроводе;
- 10.Qpot_obr, Тепловые потери в обратном трубопроводе, ккал/ч (Вт)-В результате расчета определяется величина тепловых потерь в обратном трубопроводе.

(i) Примечание

Что означает отрицательное значение расхода в трубопроводе? Отрицательное значение расхода теплоносителя в трубопроводе означает, что направление движения воды не соответствует стрелке направления участка. Подробнее см. раздел *Направление движения воды в трубопроводах*.

10.4.5. По дросселирующим устройствам

Только для режима вычисляемой дроссельной шайбы

- 1. Dshb_pod, Диаметр шайбы на байпасе в под. тр-де, мм-В результате расчета определяется диаметр шайбы на байпасе в подающем трубопроводе;
- 2. Dshb_pod, Количество шайб на байпасе в подающем тр-де, шт.-В результате расчета определяется количество шайб на байпасе в подающем трубопроводе;
- 3. Dshb_obr, Диаметр шайбы на байпасе в обр. тр-де, мм-Врезультате расчета определяется диаметр шайбы на байпасе в обратном трубопроводе;
- 4. Dshb_obr, Количество шайб на байпасе в обратном тр-де, шт-В результате расчета определяется количество шайб на байпасе в обратном трубопроводе.

10.4.6. По ЦТП

- 1. Qo_t, Подключенная нагрузка на отопление. Гкал/ч (МВт)-В результате расчета определяется подключенная нагрузка на отопление по подключенной нагрузке квартала;
- 2. Qsv_t, Подключенная нагрузка на вентиляцию. Гкал/ч (МВт)-В результате расчета определяется подключенная нагрузка на вентиляцию по подключенной нагрузке квартала;
- 3. Qgv_t, Подключенная нагрузка на ГВС, Гкал/ч (МВт)-В результате расчета определяется подключенная нагрузка на горячее водоснабжение по подключенной нагрузке квартала;
- 4. Nel_r, Рекомендуемый номер элеватора- В результате расчета определяется номер элеватора, рекомендуемый к установке;

- 5. *Dsop_r*, *Рекомендуемый диаметр сопла элеватора*, *мм* В результате расчета определяется рекомендуемый диаметр сопла элеватора;
- 6. *U_calc*, *Pacчетный коэффициент смешения* В результате расчета определяется расчетный коэффициент смешения;
- 7. dHsoplo, Потери напора в сопле элеватора, м-В результате расчета определяется величина потерь напора в сопле элеватора;
- 8. *T1_t*, *Температура на входе 1 контура*, °С-В результате расчета определяется температура теплоносителя на входе первого контура ЦТП;
- 9. *T2_t*, *Температура на выходе 1 контура*, *°С*-В результате расчета определяется температура теплоносителя на выходе первого контура ЦТП;
- 10.73so_t, Температура на выходе 2 контура, °С-В результате расчета определяется температура теплоносителя на выходе второго контура ЦТП;
- 11.*T2so_t*, *Температура на входе 2 контура*, *°С*-В результате расчета определяется температура теплоносителя на входе второго контура ЦТП;
- 12.Dshb_pod, Диаметр шайбы на под.тр-де, мм-В результате расчета определяется диаметр шайбы на подающем трубопроводе;
- 13.Nshb_pod, Количество шайб на под. тр-де, шт.-В результате расчета определяется количество шайб на подающем трубопроводе;
- 14.Dshb_obr, Диаметр шайбы на обр. тр-де, мм-В результате расчета определяется диаметр шайбы на обратном трубопроводе;
- 15.Nshb_obr, Количество шайб на обр. тр-де, шт-В результате расчета определяется количество шайб на обратном трубопроводе;
- 16.dHshb_pod, Потери напора на шайбе в под. тр-де, м-В результате расчета определяется величина потерь напора на шайбе на подающем трубопроводе;
- 17.dHshb_obr, Потери напора на шайбе в обр. тр-де, м-В результате расчета определяется величина потерь напора на шайбе на обратном трубопроводе;
- 18.Ggv, Расход сетевой воды на СВ, т/ч-В результате расчета определяется расход сетевой воды на систему вентиляции;
- 19.Dshb_gvs, Диаметр шайбы на ГВС, мм-В результате расчета определяется диаметр шайбы на систему горячего водоснабжения;
- 20.Nshb_gvs, Количество шайб на ГВС, шт.-В результате расчета определяется количество шайб на систему горячего водоснабжения;
- 21.dHshb_gvs, Потери напора на шайбе ГВС, м-В результате расчета определяется величина потерь напора на шайбе системы горячего водоснабжения;
- 22.Gniz, Расход сет.воды I ступени ТО ГВС, т/ч-В результате расчета определяется расход сетевой воды в первом контуре I ступени теплообменного аппарата системы горячего водоснабжения;

- 23.G2_niz, Расход 2 контура I ступени ТО ГВС, т/ч-В результате расчета определяется расход горячей воды во втором контуре;
- 24.Q_niz, Тепловая нагрузка I ступени, Гкал/ч (МВт)-В результате расчета определяется тепловая нагрузка I ступени ТО на ГВС, определяется в результате расчета;
- 25.711_niz, Температура на входе 1 контура I ступени, °С-В результате расчета определяется температура на входе 1 контура I ступени ТО на ГВС, определяется в результате расчета;
- 26.712_niz, Температура на выходе 1 контура I ступени, °С-В результате расчета определяется температура на выходе 1 контура I ступени ТО на ГВС;
- 27.721_niz, Температура на входе 2 контура I ступени, °С-В результате расчета определяется температура на входе 2 контура I ступени ТО на ГВС;
- 28.722_niz, Температура на выходе 2 контура I ступени, °С-В результате расчета определяется температура на выходе 2 контура I ступени ТО на ГВС;
- 29.711_verh, Температура на входе 1 контура II ступени, °С-В результате расчета определяется температура на входе 1 контура II ступени ТО на ГВС;
- 30.712_verh, Температура на выходе 1 контура II ступени, °С-В результате расчета определяется температура на выходе 1 контура II ступени ТО на ГВС;
- 31.721_verh, Температура на входе 2 контура II ступени, °С-В результате расчета определяется температура на входе 2 контура II ступени ТО на ГВС;
- 32.722_verh, Температура на выходе 2 контура II ступени, °С-В результате расчета определяется температура на выходе 2 контура II ступени ТО на ГВС;
- 33.Gverh, Расход сет.воды II ступени ТО ГВС, т/ч-В результате расчета определяется расход сетевой воды II ступени теплообменного аппарата системы горячего водоснабжения;
- 34.G2_verh, Расход 2 контура II ступени ТО ГВС, т/ч-В результате расчета определяется расход горячей воды во втором контуре II ступени ТО на ГВС;
- 35.*Gperem, Расход воды по перемычке, т/ч*-В результате расчета определяется расход воды по перемычке;
- 36.Gsum_pod2, Суммарный расход воды во 2 контуре ЦТП, т/ч-В результате расчета определяется суммарный расход во втором контуре ЦТП;
- 37.Qverh, Тепловая нагрузка верхней ступени ТО ГВС, Гкал/ч (МВт)-В результате расчета определяется тепловая нагрузка верхней ступени теплообменного аппарата системы горячего водоснабжения;

- 38.Qniz, Тепловая нагрузка нижней ступени ТО ГВС, Гкал/ч (МВт)-В результате расчета определяется тепловая нагрузка нижней ступени теплообменного аппарата системы горячего водоснабжения;
- 39.Qut_pod, Потери тепла от утечек в подающем тр-де, Ккал/ч (МВт)-В результате расчета определяется величина потерь тепла от утечек в подающем трубопроводе;
- 40.Qut_obr, Потери тепла от утечек в обратном тр-де, Ккал/ч (МВт)-В результате расчета определяется величина потерь тепла от утечек в обратном трубопроводе;
- 41.Qut_potr, Потери тепла от утечек в сист. теплопотреб, Ккал/ ч (МВт) - В результате расчета определяется величина тепловых потерь от утечек в системах теплопотребления;
- 42.Qsum, Суммарная тепловая нагрузка на ЦТП, Гкал/ч (МВт)-В результате расчета определяется суммарная тепловая нагрузка на ЦТП;
- 43.Qts_pod, Тепловые потери в подающем тр-де, Ккал/ч (МВт)-В результате расчета определяется величина тепловых потерь в подающем трубопроводе;
- 44.Qts_obr, Тепловые потери в обратном тр-де, Ккал/ч (МВт)-В результате расчета определяется величина тепловых потерь в обратном трубопроводе;
- 45.Gut_pod, Расход воды на утечки из под. тр-да, т/ч-В результате расчета определяется величина утечек из подающего трубопровода;
- 46.Gut_obr, Расход воды на утечки из обр. тр-да, т/ч-В результате расчета определяется величина утечек из обратного трубопровода;
- 47.Gut_potr, Расход воды на утечки из систем теплопотреб, т/ч-В результате расчета определяется величина утечек из систем теплопотребления.

Глава 11. Поверочный расчет

11.1. Цель расчета

Целью поверочного расчета является определение фактических расходов теплоносителя на участках тепловой сети и у потребителей, а также количества тепловой энергии получаемой потребителем при заданной температуре воды в подающем трубопроводе и располагаемом напоре на источнике.

Созданная математическая имитационная модель системы теплоснабжения, служащая для решения поверочной задачи, позволяет анализировать гидравлический и тепловой режим работы, а также прогнозировать изменение температуры внутреннего воздуха у потребителей. Расчеты могут проводиться при различных исходных данных, в том числе при аварийных ситуациях, например, отключении отдельных участков тепловой сети, передачи воды и тепловой энергии от одного источника к другому по одному из трубопроводов и т.д. В качестве теплоносителя может использоваться вода, антифриз или этиленгликоль.

Расчёт тепловых сетей можно проводить с учётом:

- утечек из тепловой сети и систем теплопотребления;
- тепловых потерь в трубопроводах тепловой сети;
- фактически установленного оборудования на абонентских вводах и тепловых сетях.

В результате расчета определяются расходы и потери напора в трубопроводах, напоры в узлах сети, в том числе располагаемые напоры у потребителей, температура теплоносителя в узлах сети (при учете тепловых потерь), температуры внутреннего воздуха у потребителей, расходы и температуры воды на входе и выходе в каждую систему теплопотребления. При работе нескольких источников на одну сеть определяется распределение воды и тепловой энергии между источниками. Подводится баланс по воде и отпущенной тепловой энергией между источником и потребителями. Определяются зоны влияния источников на сеть

11.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. Рисунок 11.1, «Знакомство с панелью расчетов»).

	ZuluThermo	_ * ×	
	Система централизованного теплоснабж	ени Слой	5
0	Наладка Поверка Температурный гр	афик Конструкторский Надежность Сервис Оборудование	
2	 Сучетом угечек Сучетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	Система централизованного теплоснабжени	6
3	Раскрас		7
4	Расчет Настройки Спра	вка Закрыть	

Рисунок 11.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета.
- 2. Выбор параметров расчета.
- 3. Кнопка для открытия окна настроек расчетов.
- 4. Кнопка запуска расчета.
- 5. Кнопка выбора слоя.
- 6. Окно выбора источника для расчета.
- 7. Выбор встроенных тематических раскрасок для анализа расчета.

11.3. Запуск расчета

Примечание

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (Глава 9, *Настройки расчетов и вкладка Сервис*)

Для запуска поверочного расчета:

 Выполните команду главного меню Задачи ZuluThermo или нажмите кнопку панели инструментов. Откроется окно теплогидравлических расчетов (см. <u>Рисунок 11.2, «Вкладка «Поверка» диалога теплогидравлических расчетов»</u>).

ZuluThermo _ • ×						
					Слой	
Наладка Поверка	Температурный граф	ик Конструкторский	Надежность	Сервис	Оборудование	
С учетом утечек С учетом тепловы По норм. потер По изоляции Сопла и шайбы из Диаметры из конструкторского расчета	к потерь рям в наладки					
	Раскраск	а <нет>			~	
Расчет Нас	тройки Справи	а Закрыть				

Рисунок 11.2. Вкладка «Поверка» диалога теплогидравлических расчетов

- 2. Откройте вкладку Поверка;
- Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. <u>Рисунок 11.3, «Окно выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Рисунок 11.3. Окно выбора слоя

4. Отметьте источник, для которых будет производиться расчет, установив флажок рядом с названием источника (<u>Рисунок 11.4, «Выбор источника для расчета»</u>);

ZuluThermo						
Пример тепловой сети					Слой	
Наладка Поверка Температу	Оборудование					
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	вя 33 ий					
	Раскраска	<нет>			¥	
Расчет Настройки	Справка	Закрыть				

Рисунок 11.4. Выбор источника для расчета

- 5. В левой части диалогового окна задайте параметры проводимого расчета, установив требуемые флажки:
 - С учетом утечек проводить ли расчет с учетом нормативных утечек в тепловой сети;
 - С учетом тепловых потерь проводить ли расчет с учетом тепловых потерь. Дополнительно требуется выбрать способ учета: с учетом нормативных тепловых потерь или потерь через изоляцию;
 - Сопла и шайбы из наладки при включении данной опции, в расчете будут участвовать шайбы, подобранные в результате наладочного расчета;
 - Диаметры из конструкторского расчета при включении данной опции, в расчете будут использоваться диаметры, подобранные конструкторским расчетом.
- 6. Нажмите кнопку Расчет.

Если в ходе занесения исходной информации какие-либо данные необходимые для расчета не были внесены или были внесены неверно, то при проведении расчетов в окне сообщений программа выдаст уведомление ошибке <u>Рисунок 11.5</u>, «Ошибка при запуске расчета» (красным цветом). Программа следит не только за наличием необходимой информации, но и за ее логической верностью, то есть, если Вы впишете диаметр участка более 1.4 м, то программа выдаст ошибку.

Рисунок 11.5. Ошибка при запуске расчета

- 1. Окно Сообщения
- 2. Сообщение об ошибке
- 3. Окно базы данных объекта, у которого обнаружена ошибка
- 4. Поле базы данных с ошибочным значением
- 5. Объект с ошибкой в данных

При отсутствии ошибок в данных или конфигурации сети программа выполнит расчет выбранной сети и заполнит результатами расчета таблицы для каждого типа объекта тепловой сети. Протокол расчета будет отображаться в нижней части экрана в панели Сообщения. В случае ошибок они в протоколе будут выделены красным цветом (более подробно о возможных ошибках Глава 18, Возможные ошибки расчетов).

11.4. Расчет при нехватке установленной мощности на источнике

Использование данной задачи

- Авария на котельной, связанная с отключением одного из установленных котлов.
- При двух работающих источниках на сеть выход из строя одного из них.

В любом случае подключенная нагрузка, (определяемая в результате расчета), превышает установленную тепловую мощность источника (котельной).

በ Предупреждение

Для решения заданных задач используется поверочный расчет

Цель расчета

- 1. Определить максимально возможную температуру теплоносителя в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха.
- 2. Определить температуру наружного воздуха, при которой не происходит нарушение режима работы потребителей.

При решении первой задачи известными являются:

- температура наружного воздуха;
- установленные регулирующие и дросселирующие устройства;
- установленная мощность источника;
- тепловая нагрузка, подключенная к тепловой сети.

Расчеты данного типа выполняются в поверочной задаче в автоматическом режиме. Для примера (Пример квартальной сети) приведенного в поставляемом ПО подключенная нагрузка составляет 9.628 Гкал/ч. В случае если установленная мощность источника будет равна 8 Гкал/ч, то при температуре наружного воздуха -34 °С и правильно подобранных дросселирующих устройствах максимально возможная температура теплоносителя будет составлять 116.65 °C, а температура воздуха внутри отапливаемых зданий не превышать 10 °C.

При решении второй задачи известными являются:

- установленная мощность источника;
- установленные регулирующие и дросселирующие устройства;
- тепловая нагрузка, подключенная к тепловой сети.

Задача решается методом подбора такой температуры наружного воздуха, при которой не будет происходить нарушение режима работы отапливаемых зданий. Для нашего примера при установленной мощности источника в 8 Гкал/ч и подключенной нагрузке в 9,628 Гкал/ч минимальная температура наружного воздуха, до которой можно работать без нарушения режима работы потребителей, -23 °C. При этом температура воздуха внутри отапливаемых зданий отличается от расчетного значения не более чем на ± 0.4 °C. Температура воды в подающем трубопроводе 126.2 °C.

Глава 12. Конструкторский расчет

12.1. Цель расчета

Целью конструкторского расчета является определение диаметров трубопроводов тупиковой и кольцевой тепловой сети при пропуске по ним расчетных расходов при заданном (или неизвестном) располагаемом напоре на источнике.

Данная задача может быть использована при:

- 1. Проектировании новых тепловых сетей.
- 2. При реконструкции существующих тепловых сетей.
- 3. При выдаче разрешений на подключение новых потребителей к существующей тепловой сети.

В качестве источника теплоснабжения может выступать любой узел системы, например тепловая камера. Для более гибкого решения данной задачи предусмотрена возможность задания для каждого участка тепловой сети либо оптимальной скорости движения воды, либо удельных линейных потерь напора.

В результате расчета определяются диаметры трубопроводов, располагаемый напор в точке подключения, расходы, потери напора и скорости движения воды на участках сети.

Смотрите также:

- 1. Запуск конструкторского расчета (Раздел 12.3, «Запуск расчета»).
- 2. Последовательность выполнения конструкторского расчета (<u>Раздел 12.3.1, «После-довательность выполнения расчета</u>»).
- 3. Настройки конструкторского расчета (<u>Глава 9, *Настройки расчетов и вкладка Сер-вис*).</u>
- 4. Пример конструкторского расчета (<u>Раздел 12.4</u>, «<u>Пример конструкторского расчета</u>).

12.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью конструкторского расчета (см. <u>Ри-</u>сунок 12.1, «Знакомство с панелью расчетов»).

ZuluThermo	6 5	_ • X
Пример тепловой сети		Слой
Наладка Поверка Температурный гр	рафик Конструкторский Надежность Сервис	Оборудование
Участок подключения 15	Сталь 🗸	
Узел подключения	Расход на потребителях	
Располагаемый напор, м 10	🔾 По расходам	
Напор в обратном тр-де, м 20	🖲 По тепловым нагрузкам	
	t в подающем тр-де, С 🛛 150	
О По скоростям	t в обратном тр-де, С 70	
• По удельным линейным потерям	t горячей воды, С 🛛 60	
Минимальный диаметр, м 0.03	t холодной воды, С 🛛 5	
Расчет Настройки Спр.	авка Закрыть	

Рисунок 12.1. Знакомство с панелью расчетов

- 1. Кнопка выбора участка подключения
- 2. Кнопка настроек расчёта
- 3. Кнопка запуска расчета
- 4. Вкладка выбора вида расчета
- 5. Кнопка открытия справочника по трубопроводам
- 6. Кнопка выбора слоя для расчета
- 7. Панель параметров расчета

12.3. Запуск расчета

Примечание

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (Глава 9, *Настройки расчетов и вкладка Сервис*).

Для запуска конструкторского расчета тепловой сети:

1. Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку апанели инструментов. Откроется диалоговое окно теплогидравлических расчетов (<u>Рисунок 12.2</u>, «Вкладка «Конструкторский» диалога теплогидравлических расчетов»).

Наладка 🛛 Поверка 🗌 Температурный гр	афик Конструкторский	Надежность	Сервис	Оборудовани
Участок подключения -1		¥		
Узел подключения	Расход на потребителя:	×		
Располагаемый напор, м 10	🖲 По расходам			
Напор в обратном тр-де, м 20	🔿 По тепловым нагр	узкам		
Подбор дизметров	t в подающем тр-де, С	150		
	t в обратном тр-де, С	70		
• По удельным линейным потерям	t горячей воды, С	60		
Минимальный диаметр, м 0.03	t холодной воды, С	5		

Рисунок 12.2. Вкладка «Конструкторский» диалога теплогидравлических расчетов

- 2. Перейдите на вкладку Конструкторский.
- Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. <u>Рисунок 12.3, «Окно выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Кварталы	💣 🕕 🔊 💆 <u>Н</u> азад
]Здания	ď 🚯 🍠 👼 📃 📃
]Надписи	💣 🚺 🍠 💁 <u>В</u> перед
Пример тепловой сети	🐼 🗿 🍠 🐲 Добавить
	Исключить
	Настройка.
	Структура.
	Клавиша
	ОК
	Отмена
	Справка

Рисунок 12.3. Окно выбора слоя

 Выберите на основе каких данных как будет проводиться расчет установив переключатель По расходам/По тепловым нагрузкам (в правой части диалога) в требуемое положение.

Если расчет проводится на основе известных расчетных расходов, следует установить значение По расходам. В этом случае должны быть заданы расчетные расходы на потребителях.

Если же расчет проводится на основе известных тепловых нагрузок, (значение По тепловым нагрузкам) должны быть заданы нагрузки на потребителях. При расчете по тепловым нагрузкам необходимо ввести расчетные температуры воды в полях ввода под переключателем:

(i) Примечание

Подробнее об исходных данных <u>Раздел 7.4, «Исходные данные для выпол-</u> нения конструкторского расчета»

5. Задайте минимальный диаметр в поле Минимальный диаметр в метрах. Подбираемые в процессе расчета диаметры обязательно будут не меньше указанного значения.

(i) Примечание

Минимальный диаметр трубопровода задается на основании СНиП 41-02-2003 пункт 8.6., в котором говорится, что наименьший внутренний диаметр труб должен приниматься в тепловых сетях не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения – не менее 25 мм

- 6. Выберите сортамент (набор диаметров) из которого будут подбираться диаметры. Для выбора сортамента нажмите кнопку ..., откроется диалог выбора сортамента труб. По-умолчанию существует единственный сортамент Сталь. Подробнее о сортаменте <u>Раздел 20.1, «Справочник по трубам»</u>;
- 7. В поле Напор в обратном тр-де, м укажите значение напора (с учётом геодезической отметки) в обратном трубопроводе в точке подключения.
- 8. При известном располагаемом напоре в узле подключения его можно задать, установив флажок Напор в узле, м и указать значение напора в поле справа от флажка;
- 9. Выберите способ подбора диаметров труб установив переключатель По скоростям/По удельным линейным потерям в требуемое положение.

В случае выбора варианта По скоростям, диаметры будут подбираться таким образом, чтобы вода двигалась с указанной скоростью. Скорость при этом должна быть указана на каждом участке в поле Оптимальная скорость (конструктор-ский), м/с;

При выборе варианта По линейным потерям диаметры будут подбираться таким образом, чтобы линейные потери на участках не превышали указанные. Линейные потери при этом должны быть указаны на каждом участке в поле Удельные линейные потери (конструкторский), мм/м.

12.3.1. Последовательность выполнения расчета

- 1. Нажмите кнопку Выделить 🕨 панели навигации;
- 2. Выберите участок тепловой сети, для которого будет производиться конструкторский расчет, щелкнув по нему левой кнопкой мыши, при этом выделенный уча-

сток замигает. В случае если объект не выделяется следует производить щелчок мыши удерживая нажатыми клавиши Ctrl+Shift. Расчет будет производиться для всех участков тепловой сети следующих по направлению за выделенным;

3. Нажмите кнопку Участок подключения панели теплогидравлических расчетов. При этом участки тепловой сети, для которых будет произведен конструкторский расчет, окрасятся в красный цвет, включая выбранный участок, а участки, которые не будут рассчитаны – в серый. (см. <u>Рисунок 12.4, «Выделение участка подключения»</u>).

Рисунок 12.4. Выделение участка подключения

4. Нажмите кнопку Расчет.

Программа выполнит расчет выбранной сети. Результаты расчета будут записаны в базу данных по объектам. В окне сообщений будет выведена информация о необходимом располагаемом напоре в узле подключения.

Минимально необходимый напор в узле подключения ID=18: 10.497 м

Рисунок 12.5. Сообщение об успешном конструкторском расчете

12.4. Пример конструкторского расчета

Проведем конструкторский расчет трубопроводов тепловой сети. Для этого:

Выберите команду главного меню Задачи ZuluThermo или нажмите кнопку панели инструментов. Откроется диалог теплогидравлических расчетов. Выберите вкладку Конструкторский.

	V			
Чаладка Поверка Гемпературный гр	афик Конструкторский	Надежность	Сервис	Оборудовани
Участок подключения -1		¥		
Узел подключения	– Расход на потребителя;	ĸ		
Располагаемый напор, м 10	🖲 По расходам			
Напор в обратном тр-де, м 20	🔘 По тепловым нагру	узкам		
Подбор диаметров	t в подающем тр-де, С	150		
	t в обратном тр-де, С	70		
 По удельным линейным потерям 	t горячей воды, С	60		
Минимальный диаметр, м 0.03	t холодной воды, С	5		

Рисунок 12.6. Вкладка Конструкторский

 Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. <u>Рисунок 12.7, «Диалог выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Кварталы	ğ 🕄 🖉 💆	<u>Н</u> азад
јодания Надписи	G 🕤 🏲 🤓 . G G 🥙 🚳	<u>В</u> перед
Пример тепловой сети	ď 🚺 🖉 👼 🕺	
		Добавить
		Исключить
		Настройка
	[Структура
	[Клавиша
	[OK
	[Отмена
		Справка

Рисунок 12.7. Диалог выбора слоя

3. В режиме Выделить Выберите участок тепловой сети, для которого будет производиться конструкторский расчет, нажав на него левой кнопкой мыши, при этом выделенный участок замигает. В случае если объект не выделяется (слой не активный), следует повторить выделение удерживая нажатыми клавиши Ctrl+Shift. Расчет будет производиться для всех участков тепловой сети следующих по направлению за выделенным.

4. Нажмите кнопку Участок подключения панели теплогидравлических расчетов.

ZuluThermo Пример тепловой сети	^ > Слой
Наладка Поверка Температурный гр	афик Конструкторский Надежность Сервис Оборудование
Участок подключения 15	Сталь 🗸
Узел подключения	Расход на потребителях
Располагаемый напор, м 10	🔿 По расходам
Напор в обратном тр-де, м 20	🖲 По тепловым нагрузкам
	t в подающем тр-де, С 👘 150
Подоор диаметров	t в обратном тр-де, С 70
 По удельным линейным потерям 	t горячей воды, С 🛛 60
Минимальный диаметр, м 0.03	t холодной воды, С 5
Расчет Настройки Спра	авка Закрыть

Рисунок 12.8. Выбор участка подключения

При этом участки тепловой сети, для которых будет произведен конструкторский расчет, окрасятся в красный цвет, включая выбранный участок, а участки, которые не будут рассчитаны – в серый.

- Укажите, на основании каких данных будет производиться расчет: на основании известных расчетных расходов, либо на основании известных расчетных тепловых нагрузок. Выберите требуемый переключатель По расходам или По тепловым нагрузкам;
- 6. При расчете по тепловым нагрузкам необходимо ввести расчетные температуры воды в соответствующих полях.

Расход на потребителях	
 По расходам По тепловым нагру 	узкам
t в подающем тр-де, С	150
t в обратном тр-де, С	70
t горячей воды, С	60
t холодной воды, С	5

- Выберите как будет производиться расчет: по оптимальным скоростям движения воды в трубопроводах или по удельным линейным потерям, выбрав соответствующий переключатель По скоростям или По удельным линейным потерям;
- 8. В поле Напор в обратном тр-де, м укажите значение напора (с учётом геодезической отметки) в обратном трубопроводе в точке подключения.
- 9. Задайте, при необходимости, минимальный диаметр в поле Минимальный диаметр, м.
- 10.Нажмите кнопку Расчет. Результаты расчета можно просмотреть, открыв окно семантической информации по рассчитанным участкам трубопроводов в полях Диаметр подающего тр-да (конструкторский), ми Диаметр обратного тр-да (конструкторский), м.

Участки	_ 0	• ×
🗄 M 4 🕨 M 🗟 🚭 🖓 M 4 🕨 M	🖉 🗳 🎽 I	e
Текущая запись Запрос База Ответ		►
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С		
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С		
Температура в начале участка под.тр-да,°С		
Температура в конце участка под.тр-да,*С		
Температура в начале участка обр.тр-да, °С		
Температура в конце участка обр.тр-да, °С		
Диаметр подающего тр-да (конструкторский), м	0.1	
Диаметр обратного тр-да (конструкторский), м 0.1		
Шероховатость под. тр-да (конструкторский), мм	1	
Шероховатость обр. тр-да (конструкторский), мм	1	
Оптимальная скорость в подающем (конструкторский), м		
Оптимальная скорость в обратном (конструкторский), м/с		_
Удельные линейные потери подающего (конструкторски	30	
Удельные линейные потери обратного (конструкторский)	30	=
Сортамент	Сталь	
		-

Рисунок 12.9. Просмотр результатов конструкторского расчета

Глава 13. Расчет температурного графика

13.1. Цель расчета

Целью расчета является определение минимально необходимой температуры теплоносителя на выходе из источника для обеспечения у выбранного потребителя температуры внутреннего воздуха не ниже расчетной. Температурный график строится для отопительного периода с интервалом в 1 °C.

Предусмотрена возможность задания температуры срезки графика и компенсации недоотпуска тепловой энергии в этот период времени за счет увеличения расхода сетевой воды от источника.

Предупреждение

Расчет температурного графика требует лицензии на поверочный расчет, и должен проводиться только после проведения поверочных расчетов.

Смотрите также:

- 1. Запуск расчета температурного графика (Раздел 13.3, «Запуск расчета»);
- 2. Просмотр результатов расчета (<u>Раздел 13.4, «Просмотр результатов расчета»</u>);
- 3. Сохранение результатов расчета температурного графика (<u>Раздел 13.5, «Сохране-</u> ние результатов расчета температурного графика»).

13.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью температурного графика (см. <u>Рисунок 13.1</u>, «Знакомство с панелью расчетов»).

1
ZuluThermo _ • ×
Система теплоснабжения Слой
Наладка Поверка Температурный график Конструкторский Надежность Сервис Оборудование
Потребитель 44 Т внутр.воз. 20.00
Источник 1 Напор 49.00 Т под. 150.00
Т наруж.воз34.00
Температура срезки
Температура полки 60 График Сохранить
6 6
Расчет Настройки Справка Закрыть

Рисунок 13.1. Знакомство с панелью расчетов

- 1. Вкладка выбора вида расчета.
- 2. Кнопка выбора потребителя для расчета.
- 3. Панель выбора параметров расчета.
- 4. Кнопка запуска расчета.
- 5. Кнопка для построения температурного графика по результатам расчета.
- 6. Кнопка для сохранения результатов.
- 7. Кнопка выбора слоя.

13.3. Запуск расчета

Для запуска расчета температурного графика тепловой сети:

1. Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку апанели инструментов. Откроется окно теплогидравлических расчетов. Выполните команду главного меню Задачи. Выполните команду в само в само

ZuluThermo			_ • ×
			Слой
Наладка Поверка Температурный график Конструкторский Н	Надежность	Сервис	Оборудование
Потребитель -1 Т внутр.воз.			
Источник Напор Т под.			
Т наруж.воз.			
Температура срезки			
Температура полки 60 График Сохранить			
Расчет Настройки Справка Закрыть			

Рисунок 13.2. Вкладка «Температурный график» диалога теплогидравлических расчетов

1. Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (<u>Рисунок 13.3, «Диалог выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог.

Кварталы	🖉 🕕 🖉 💆 🛛 Назад
здания Надписи	СС О Р Ф СС О Р Ф Вперед
Пример тепловой сети	G 🔞 🖉 👼 Добавить
	Исключить
	Настройка
	Структура
	Клавиша
	ОК
	Отмена
	Справка

Рисунок 13.3. Диалог выбора слоя

- 2. Выберите вкладку Температурный график;
- 3. Нажмите кнопку Выделить панели навигации и выберите потребителя тепловой сети для которого будет производиться расчет, щелкнув по нему левой кнопкой мыши (слой при этом должен быть активным, либо можно удерживать при щелчке Ctrl+Shift), при этом потребитель будет выделен мигающей рамкой;
- 4. Нажмите кнопку Потребитель (см. <u>Рисунок 13.4, «Выбор потребителя для расчета»</u>) панели теплогидравлических расчетов.

ZuluThermo _ • ×
Пример тепловой сети Слой
Наладка Поверка Температурный график Конструкторский Надежность Сервис Оборудование
Потребитель 71 Т внутр.воз. 20.00
Источник 1 Напор 44.90 Т под. 150.00
Т наруж.воз. 34.00
Температура срезки 🗌 Регулировать напором
Температура полки 60 График Сохранить
Расчет Настройки Справка Закрыть

Рисунок 13.4. Выбор потребителя для расчета

- 5. Задайте необходимые параметры расчета:
 - Температура срезки указывается, если на источнике нет возможности обеспечивать расчетную температуру теплоносителя в подающем трубопроводе, напри-
мер вместо расчетной 150°С максимальная, которую может обеспечить источник 130°С. При отсутствии температуры срезки данное поле не заполняется;

- Регулировать напором при заданной температуре срезки и при установленном флажке Регулировать напором, недостаточная температура воды в подающем трубопроводе, будет компенсироваться увеличением располагаемого напора, для обеспечения расчетной температуры внутреннего воздуха у потребителя;
- Температура полки указывается минимальная температура теплоносителя в подающем трубопроводе. Для закрытых систем теплоснабжения – не менее 70° С, для открытых систем теплоснабжения – не менее 60°С.
- 6. Нажмите кнопку Расчет. Для просмотра рассчитанного температурного графика нажмите кнопку График.

13.4. Просмотр результатов расчета

Рассчитанные данные выводятся в поле сообщений в виде ряда значений разделенных между собой запятой (<u>Рисунок 13.5, «Результаты расчета температурного графика»</u>). Семь значений в следующей последовательности:

- 1. Температура наружного воздуха;
- 2. Температура теплоносителя в подающем трубопроводе;
- 3. Температура теплоносителя в обратном трубопроводе;
- 4. Температура воздуха внутри помещения;
- 5. Располагаемый напор на источнике, м;
- 6. Суммарный расход сетевой воды в подающем трубопроводе, т/ч;
- 7. Относительный расход воды на систему отопления.
- 8. Температура на входе в систему отопления.
- 9. Температура на выходе из системы отопления.

Сообщения
6.0,65.5,44.6,20.0,35.0,258.7,0.00,46.1,39.1
7.0,63.1,43.4,20.1,35.0,264.3,0.00,44.7,38.2
8.0,60.4,41.6,20.1,35.0,264.3,0.00,43.1,37.1
9.0,60.0,41.4,20.7,35.0,264.3,0.00,43.1,37.3
10.0,60.0,41.6,21.4,35.0,264.3,0.00,43.4,37.7
Расчет окончен!
Время - 00:00:12
КІРІ\Сообщения \Поверка /

Рисунок 13.5. Результаты расчета температурного графика

Для того чтобы рассмотреть температурный график после расчета в виде диаграммы нажмите на панели теплогидравлических расчетов кнопку График. Диаграмму температурного графика можно распечатать, нажав кнопку Печать.

Рисунок 13.6. Температурный график в результате расчета

На температурном графике <u>Рисунок 13.6, «Температурный график в результате расчета»</u> отображаются:

- ось абсцисс температура наружного воздуха;
- ось ординат температура теплоносителя;
- температура теплоносителя в подающем трубопроводе линия красного цвета;
- температура теплоносителя в обратном трубопроводе линия синего цвета;
- температура воздуха в помещении линия зеленого цвета.

13.5. Сохранение результатов расчета температурного графика

Для того чтобы сохранить результаты расчета температурного графика:

1. Нажмите правую кнопку мыши на поле сообщений и в появившемся меню выберите пункт Сохранить. (см. <u>Рисунок 13.7, «Сохранение температурного графика»</u>)

Сообщения			
2.0,64.9,39.6,18.0,50.0,32.9,0.31,64.9,39.4			
3.0,62.4,38.6,18.0,50.0,33.7,0.29,62.4,38.4			
4.0,60.0,37.5,18.0,50.0,34.5,0.27,60.0,37.3			
5.0,60.0,38.0,18.8,50.0,34.5,0.27,60.0,37.7			
6.0,60.0,38.4,19.5,50.0,34.5,0.26,60.0,38.2			
7.0,60.0,38.9,20.2,50.0,34.5,0.26,60.0,38.6			
8.0,60.0,39.3,21.0,50.0,34.5,0.25,60.0,39.1	Ba	Konuporath	Ctrl+C
9.0,60.0,39.7,21.7,50.0,34.5,0.25,60.0,39.5	43	копировать	Cui+C
10.0,60.0,40.2,22.4,50.0,34.5,0.24,60.0,39.9	H	Сохранить	Ctrl+S
Расчет окончен!	AA.	Найти	Ctrl+F
Время - 00:00:27			
		Очистить	

Рисунок 13.7. Сохранение температурного графика

2. В появившемся диалоговом окне сохранения файла выберите, каталог в котором будет сохранен файл, и задайте имя файла (латинскими буквами). Нажмите кнопку Сохранить. Сохраненный файл с результатами расчетов можно просмотреть в любом текстовом редакторе.

Глава 14. Расчет годовых нормируемых потерь через тепловую изоляцию

14.1. Цель расчета

Целью данного расчета является определение нормативных тепловых потерь через изоляцию трубопроводов в течение года. Тепловые потери определяются суммарно за год с разбивкой по каждому месяцу с учетом работы трубопроводов тепловой сети в различные периоды (летний, зимний). Расчет может быть выполнен с учетом поправочных коэффициентов на нормы тепловых потерь.

Просмотреть результаты расчета можно как суммарно по всей тепловой сети, так и по каждому отдельно взятому источнику тепловой энергии и каждому центральному тепловому пункту (ЦТП), а также по различным владельцам (балансодержателям) участков тепловой сети.

Смотрите также:

- 1. Знакомство с панелью расчетов (<u>Раздел 14.2, «Знакомство с панелью расчетов»</u>).
- 2. Запуск расчета (<u>Раздел 14.3, «Запуск расчета»</u>).
- 3. Экспорт результатов в EXCEL (<u>Раздел 14.4, «Экспорт в EXCEL»</u>).

14.2. Знакомство с панелью расчетов

Перед запуском расчета познакомимся с панелью теплогидравлических расчетов (см. <u>Рисунок 14.1, «Знакомство с панелью расчетов»</u>).

Расчет годовых нормируемых потерь через тепловую изоляцию

						pes	Ten	JIODyio	115051	лцшо					
🖃 - Тепла	звая	сеть			- Графі	ик	- (3)		Среднегодовь			Расчет	потерь	Сохранить
👝 🗄 Kı	отел	ьная N	² 1		Тнв	-30.0		Tco 95.0		Тнв -5.5	Тгрунт	0.0			
1	Ц	ГП - 1			Troa	150	n	тее 20.0		Teor 62.0	Treas	10.0	UT	нет	
-	Ц	ГП • 1 (Г	"BC)		тнод	100.	_	100		под од.о	подв	1	💿 Сумм	арные по п	одсети 🔼
	Ц '	ГП - 2			Тобр	70.0				Тобр 49.0			По да	анномч чзлч	. 6
	Ц	ГП - 2 (Г	"BC)										0		
					🔽 Поп	равочн	ый коз	ффициент н	а нормы т	епловых поте	рь		Владель	цы:	
				.	🔽 Рчсс	ские за	головн	ки в отчете					(Bee Ba	อดอสมแมนไ	6 -
			2								7		(DCC BA	адельцыј	
Месяц	П	Про	Тнв	Тгр	Тпод	Тобр	Тхв	Опод Гкал	Qобр Гка	ал Сут_под т	Qут_под	Gут_обр т	Qут_обр	. Gyr_пот т	Qут_пот
Январь]0	744	-11.0	1.0	104.5	54.9	5.0	389.0	166.7	229.4	19.2	234.1	11.8	198.7	11.6
	Л	0	-11.0	1.0	60.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Февраль	0	672	-30.0	0.0	150.0	70.0	0.0	445.4	190.9	201.8	23.8	210.0	13.8	179.4	12.8
	Л	0	-30.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Март	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Апрель	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Май	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Июнь	0	0	0.0	0.0	77.0	45.0	0.0	247.1	105.9	105.0	6.0	105.6	4.8	192.3	9.8
	Л	720	0.0	0.0	60.0	0.0	0.0	71.9	17.0	121.0	7.3	123.1	0.0	0.0	0.0
Июль	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Август	0	0	0.0	0.0	77.0	45.0	0.0	255.3	109.4	108.5	6.2	109.1	4.9	198.7	10.1
	Л	744	0.0	0.0	60.0	0.0	0.0	74.3	17.6	125.0	7.5	127.2	0.0	0.0	0.0
Сентябрь	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Октябрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ноябрь	0	720	0.0	0.0	77.0	45.0	0.0	327.9	140.5	224.8	15.2	227.4	10.2	192.3	9.8
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Декабрь	0	744	0.0	0.0	77.0	45.0	0.0	338.8	145.2	232.3	15.7	235.0	10.6	198.7	10.1
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Итого:								4151.6	1737.0	2727.7	191.8	2767.5	113.2	2339.2	124.3

Рисунок 14.1. Знакомство с панелью расчетов

- 1. Окно выбора источника или ЦТП для расчета
- 2. Таблица исходных данных для расчета
- 3. Исходные данные о температурном графике источника (цтп) выбранного в пункте 1
- 4. Исходные данные о среднегодовых температурах источника (цтп) выбранного в пункте 1
- 5. Параметры выбора результатов суммарно по всем сетям или от источника до ЦТП
- 6. Выбор отображения результатов по различным владельцам (балансодержателям) участков тепловой сети.
- 7. Таблица результатов расчета

14.3. Запуск расчета

Для запуска расчета годовых потерь по нормативам:

- Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов;
- В открывшемся окне нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;

Расчет годовых нормируемых потерь через тепловую изоляцию

 Перейдите на вкладку Сервис и нажмите кнопку Расчет тепловых потерь. Откроется диалог выбора источников для расчетов (см. <u>Рисунок 14.2, «Выбор источника для</u> <u>расчета»</u>);

Источники для расчета тепловых	к потерь 🛛 🗙
	ОК

Рисунок 14.2. Выбор источника для расчета

4. Оставьте флажки на источниках, участвующих в расчете и нажмите кнопку ОК. Откроется диалог расчета тепловых потерь (см. <u>Рисунок 14.3, «Расчет нормативных</u> тепловых потерь за год»).

В левом верхнем углу диалога располагается древовидный список источников тепловой сети. При выборе конкретного источника, данный источник становится текущим, в других полях диалога отображаются данные по этому источнику и расчет (в случае расчета от конкретного источника) выполняется по этому источнику.

									AAA								
🖃 - Тепло	вая	сеть			Графи	ик			0	реднег	одовыю	e		Расчет	потерь	Сохранить	
🖮 Ko	лел	ьная N	° 1		Тнв	-30.0)	Tco 95.	0	Тнв	5.5	Тгрунт	1.0	0~			
-	Ц1	ГП - 1 ГП - 1 (-DC)		Тлод	150.	0	Твв 20.	0	Глод 🛛	62.0	Тподв	10.0				
	Ц1 Ц1	ГП - 1 () ГП - 2 () ГП - 2 ()	FBC)		Тобр	70.0			1	обр	49.0			🖲 Сумм 🔵 По да	 Суммарные по подсети По данному узлу 		
					🖌 Поп	равочн	ый коэ	ффициент і	на нормы те	пловых	потер	ъ		Владель	цы:		
					🖌 Русс	жие за	головк	и в отчете						(Все владельцы)			
Месяц	П.,	Про	Тнв	Тгр	Тлод	Тобр	Тхв	Опод Гка	л Qобр Гка	л Gүт	под т	Qуг под	Gүг обр т	Qут обр	. Gyr потт	Qyrnor	
Январь	0	744	-11.0	1.0	104.5	54.9	5.0	432.9	185.5	264.4	4	22.7	270.2	13.6	198.7	11.6	
	Л	0	-11.0	1.0	60.0	0.0	5.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Февраль	0	672	-30.0	0.0	150.0	70.0	0.0	499.9	214.3	232.1	1	28.3	242.4	16.1	179.4	12.8	
	Л	0	-30.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Март	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Апрель	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Май	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Июнь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Июль	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Август	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Сентябрь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Октябрь	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Ноябрь	0	720	0.0	0.0	77.0	45.0	0.0	361.6	155.0	259.3	3	17.8	262.5	11.8	192.3	9.8	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Декабрь	0	744	0.0	0.0	77.0	45.0	0.0	373.7	160.1	268.0)	18.4	271.3	12.2	198.7	10.1	
	Л	0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Итого:								4621.2	1980.5	314	1.4	233.0	3190.4	150.2	2339.2	124.3	

Рисунок 14.3. Расчет нормативных тепловых потерь за год

5. Введите исходные данные. Подробнее об исходных данных смотрите в соответствующем разделе <u>Раздел 7.6, «Исходные данные для расчета нормативных потерь тепла за год»</u>

Расчет годовых нормируемых потерь через тепловую изоляцию

Расчеты годовых нормативных тепловых потерь выполняются по занесенной информации о тепловых сетях системы теплоснабжения. Тепловые потери определяются суммарно за год с разбивкой по месяцам. Для определения месячных и годовых тепловых потерь, нужна следующая информация:

- Среднегодовая температура наружного воздуха (Тнв);
- Среднегодовая температура воды в подающем и обратном трубопроводе (Тпод и Тобр);
- Среднегодовая температура грунта (Тгрунт);
- Среднегодовая температура в подвальных помещениях (Тподв).

Среднегодовые температуры и температуры графика берутся автоматически из базы данных объектов (источника или ЦТП). Среднегодовые температуры и температуры графика для текущего источника отображаются в полях в верхней части диалога расчета нормативных тепловых потерь.

Дополнительно следует занести среднемесячные температуры для выбранного в списке источника, которые задаются в первых колонках таблицы в нижней части диалога расчета тепловых потерь. В строках таблицы месяцы, в колонках- значения. Строки таблицы разбиты на две: О- отопительный период, Л- неотопительный (летний).

- Продолжительность отопительного и неотопительного (летнего) периода в течение каждого месяца;
- Среднемесячная температура наружного воздуха;
- Среднемесячная температура грунта;
- Среднемесячная температура теплоносителя в подающем трубопроводе;
- Среднемесячная температура теплоносителя обратном трубопроводе;
- Средняя за месяц температура холодной воды.
- 6. После ввода исходных данных Нажмите кнопку Сохранить чтобы сохранить внесенные изменения;
- 7. Задайте параметры расчета:
 - Если в расчете требуется учитывать поправочный коэффициент на нормативные тепловые потери установите флажок Поправочный коэффициент на нормы тепловых потерь. Данный коэффициент вносится в качестве исходных данных в базу по участкам тепловой сети;
 - В зависимости от того, требуется проводить расчет по системе в целом (от источника до конечных потребителей), или от выбранного источника, установите переключатель Суммарные по подсети/По данному узлу в требуемое положение.

Чтобы провести расчет по системе в целом (от источника до конечных потребителей), установите флажок Суммарные по подсети. В результате этой операции будет выполнен расчет нормированных потерь тепла и воды от источника до потребителя, включая и трубопроводы ГВС при четырехтрубной прокладке. При этом нормированные потери тепла на участках будут определены с учетом поправочных коэффициентов внесенных в базу данных по участкам сети;

В случае если необходимо провести расчет от источника (котельная Южная) до ЦТП, – установите флажок По данному узлу. В результате этой операции будет выполнен расчет нормированных потерь от источника и до ЦТП;

- Для того чтобы в экспортированном в Excel были русские заголовки столбцов отчета, установите флажок Русские заголовки в отчете.
- 8. Нажмите кнопку Расчет потерь. Результаты расчета отобразятся в полях таблицы диалога расчета нормативных тепловых потерь <u>Рисунок 14.3, «Расчет нормативных</u> <u>тепловых потерь за год»</u>. Полученные результаты можно экспортировать в Excel (Раздел 14.4, «Экспорт в EXCEL»).

👔 Примечание

При наличии после ЦТП четырехтрубной тепловой сети, два трубопровода на систему отопления и вентиляции и два трубопровода, подающий и циркуляционный, на систему горячего водоснабжения и выделении ЦТП можно определить тепловые потери и утечки по каждой группе трубопроводов отдельно.

14.4. Экспорт в EXCEL

Результаты выполненных расчетов могут экспортироваться в MS Excel для этого:

- 1. Нажмите кнопку Отчет диалога расчета нормативных тепловых потерь;
- 2. В появившемся окне, (<u>Рисунок 14.4, «Экспорт результатов в Excel»</u>) нажмите кнопку Обзор... и укажите в открывшемся диалоге выбора файла каталог и название файла для сохранения книги Excel.

Рисунок 14.4. Экспорт результатов в Excel

3. Нажмите кнопку ОК, для выполнения операции.

Глава 15. Расчет надежности

15.1. Цель расчета

Цель расчета- количественная оценка надежности теплоснабжения потребителей в TC систем централизованного теплоснабжения и обоснование необходимых мероприятий по достижению требуемой надежности для каждого потребителя. Расчет выполняется в соответствии с <u>"Методикой и алгоритмом расчета надежности тепловых сетей при разработке схем теплоснабжения городов" ОАО «Газпром промгаз» [http://www.rosteplo.ru/Npb_files/npb_shablon.php?id=1590]</u>

<u>Скачать документ в формате PDF</u> [http://www.rosteplo.ru/Npb_files/metod_1590.pdf]

Обоснование необходимости реализации мероприятий, повышающих надежность теплоснабжения потребителей тепловой энергии, осуществляется по результатам качественного анализа полученных численных значений. Проверка эффективности реализации мероприятий, повышающих надежность теплоснабжения потребителей, осуществляется путем сравнения исходных (полученных до реализации) значений показателей надежности, с расчетными значениями, полученными после реализации (моделирования реализации) этих мероприятий.

15.2. Запуск расчета

Важно

Прежде чем запускать расчет, внимательно проверьте настройки расчетов (<u>Глава 9, *Настройки расчетов и вкладка Сервис*</u>), а также ввести необходимую исходную информацию: <u>Раздел 15.3</u>, «Исходные данные»

Для запуска расчета надежности:

 Выполните команду главного меню Задачи|ZuluThermo или нажмите кнопку панели инструментов. Откроется диалог теплогидравлических расчетов (см. <u>Рисунок 15.1, «Окно теплогидравлических расчетов»</u>).

ZuluThermo					_ • ×
					Слой
Наладка Поверка Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование
С учетом ГВС С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора Фроссельными шайбами Соплом элеватора					
	Раскраска	<нет>			~
Расчет Настройки	Справка	Закрыть			

Рисунок 15.1. Окно теплогидравлических расчетов

- 2. Перейдите на вкладку Надежность;
- Нажмите кнопку Слой..., выберите слой рассчитываемой тепловой сети в открывшемся диалоге (см. <u>Рисунок 15.2, «Окно выбора слоя»</u>) и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;

Пример тепловой сети Вперед Пример тепловой сети Вперед Обавить Исключить Настройка Структура Клавиша ОК Отмена	Кварталы	💣 🕕 🖉 🙍 🛛 Назад
Пример тепловой сети Добавить Исключить Настройка Структура Клавиша ОК Отмена] Здания ПНадписи	
Добавить Исключить Настройка Структура Клавиша ОК Отмена	Пример тепловой сети	ď 🗿 🖉 👼
Исключить Настройка Структура Клавиша ОК Отмена		Добавить
Настройка Структура Клавиша ОК Отмена		Исключить
Структура Клавиша ОК Отмена		Настройка.
Клавиша ОК Отмена		Структура
ОК		Клавиша
Отмена		ОК
		Отмена

Рисунок 15.2. Окно выбора слоя

4. Отметьте источник, для которого будет производиться расчет и установите флажок напротив соответствующего названия. (см. <u>Рисунок 15.3</u>, «Выбор источника для расчета»)

ZuluThermo	ZuluThermo - • ×											
Пример тепловой сети Слой												
Наладка Поверка Температурный график Конструкторский Надежность Сервис Оборудован												
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки t отоп.пер, ч: 5000 t ниж.расч, ч Tнв.сред, °C -5.00 	 Пример тепловой сети Северная Южная ТЭЦ ИП Азропорт ЦТП ул. Воронежская 3 ЦТП район Ленинский 	33										
Расчет Настройки	Справка Закрыть											

Рисунок 15.3. Выбор источника для расчета

- 5. В левой части диалогового окна задайте параметры проводимого расчета, установив флажки напротив необходимых параметров:
 - С учетом утечек проводить ли расчет с учетом нормативных утечек в тепловой сети;
 - С учетом тепловых потерь проводить ли расчет с учетом тепловых потерь. Дополнительно требуется выбрать способ учета: с учетом нормативных тепловых потерь или потерь через изоляцию;
 - Сопла и шайбы из наладки при включении данной опции, в расчете будут участвовать шайбы, подобранные в результате наладочного расчета;
- 6. В левой части диалогового окна необходимо указать исходные данные
 - Отопительный период, ч в этом поле указывается продолжительность отопительного периода в часах.
 - Тниж. расч, ч в этом поле указывается продолжительность (часы) стояния температуры наружного воздуха ниже расчетной для отопления;
 - Средняя Тнв за период, С в этом поле указывается средняя температура наружнего воздуха за отопительный период.
- 7. Нажмите кнопку Расчет.

15.3. Исходные данные

Прежде чем приступить к любому инженерному расчету, необходимо занести исходные данные. По-умолчанию поля для расчета надежности в базах данных отсутствуют, поэтому сначала поля надо добавить в базу данных (<u>Раздел 15.3.1, «Добавление полей в базы данных</u>), а затем внести исходную информацию для расчета.

• Раздел 15.3.1, «Добавление полей в базы данных»

- <u>Раздел 15.3.2, «Участок»</u>
- <u>Раздел 15.3.3</u>, «Обобщенный потребитель»
- <u>Раздел 15.3.4, «Задвижка»</u>
- Раздел 15.3.5, «Потребитель»

15.3.1. Добавление полей в базы данных

По-умолчанию поля для расчета надежности в базах данных отсутствуют. Для их добавления следует:

1. Выбрать команду главного меню Задачи|ZuluThermo или нажмите кнопку нели инструментов. Откроется диалог теплогидравлических расчетов (см. <u>Рису-</u>нок 15.4, «Окно теплогидравлических расчетов»).

ZuluThermo					_ • ×
					Слой
Наладка Поверка Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование
 Сучетом ГВС Сучетом утечек Сучетом тепловых потерь По норм. потерям По изоляции Гашение избыточного напора Дроссельными шайбами Соплом э леватора 					
	Раскраска -	<нет>			~
Расчет Настройки	Справка	Закрыты			

Рисунок 15.4. Окно теплогидравлических расчетов

- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Сервис;
- 4. Нажать кнопку Добавить поля по надежности. Рисунок 15.5, «Добавление полей»

Z. L. The series of		
ZuluThermo		_ * ×
Пример тепловой сети		Слой
Наладка Поверка Температурн	ый график Конструкторский Надежность	Сервис Оборудование
Длины участков с карты	Создать новую сеть	
Отметки высот с карты	Обновить структуры таблиц	
Начала и концы участков	Добавить поля по надежности	
Калькулятор	Единицы измерения	
	Расчет тепловых потерь	
Расчет Настройки	Справка Закрыть	

Рисунок 15.5. Добавление полей

В результате в базы данных по всем объектам, участвующим в расчете, добавятся поля исходных данных и результаты расчета надежности.

15.3.2. Участок

Для выполнения расчета надежности надо занести следующую информацию по участкам тепловой сети:

- 1. *L*, Длина участка, м- задается длина участка трубопровода в плане с учетом длины П-образных компенсаторов. Поле Длина участка можно заполнить автоматически для всех участков тепловой сети. Подробнее <u>Раздел 24.6</u>, «Участок тепловой сети»;
- Dpod, Внутренний диаметр подающего трубопровода, м-задается в метрах внутренний диаметр подающего трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, Технические характеристики стальных трубопроводов для тепловой сети);
- 3. Dobr, Внутренний диаметр обратного трубопровода, м- задается в метрах внутренний диаметр обратного трубопровода, например 0.05, 0.1, 0.15 м. Технические характеристики стальных трубопроводов для тепловой сети приведены в приложении (Приложение С, *Технические характеристики стальных трубопроводов для тепловой сети*);
- 4. Proklad, Вид прокладки тепловой сети- задается вид прокладки участка трубопровода, для этого требуется выбрать соответствующую строку, нажать кнопку ▼ и в открывшемся меню выбрать требуемый пункт: надземная, подземная канальная, подземная бесканальная, подвальная;
- 5. *Техр_паd*, *Период* эксплуатации, лет-указывается время эксплуатации трубопровода. Возможно указать год прокладки трубопровода или срок его эксплуатации. По-умолчанию расчетный год считается текущий, настроить его можно в настройках расчета надежности (Раздел 9.9, «Настройка расчета надежности»).

6. Lambda_t_nad, Средняя интенсивность отказов, 1/(км*ч)-указывается средняя интенсивность отказов трубопровода на основе статистических данных. Если пользователь не вносит статистические данные по отказам оборудования тепловых сетей, то среднее значение интенсивности отказов 1 км одного теплопровода участка тепловой сети в течение часа, принимается равным **5.7E-006**, 1/(км·ч) или 0,05 1/(км·год).

Предупреждение

Если значение поля 0 или Пусто, то данный объект считается полностью надежным.

7. Lambda_r_nad, Расчетная интенсивность отказов, 1/(км*ч)-задается рассчитанная пользователем величина интенсивности отказов. Указывается для уточнения математической модели в случае, если были проведены самостоятельные расчеты.

(i) Примечание

В случае использования данного поля, значения Средней интенсивности отказов в расчете не участвуют.

8. *Tr_nad*, *Pacчетное время восстановления*, ч - указывается время восстановления данного участка на основе собственных данных. Используется для уточнения математической модели в случае, если были проведены самостоятельные расчеты.

15.3.3. Обобщенный потребитель

Для выполнения расчета надежности надо занести следующую информацию по обобщенным потребителям тепловой сети:

- 1. *Tvso_r*, *Pacчетная темп*. внутреннего воздуха для CO, °C-задается расчетное значение температуры воздуха внутри отапливаемых помещений.
- 2. Beta_nad, Коэффициент тепловой аккумуляции, ч указывается коэффициент тепловой аккумуляции потребителя.
- 3. *Tmin_nad*, *Минимально допустимая температура*, °С- указывается минимально допустимая температура внутреннего воздуха у потребителя, на время устранения аварии.

15.3.4. Задвижка

Для выполнения расчета надежности надо занести следующую информацию по задвижкам:

- 1. *Texp_nad*, *Период* эксплуатации, лет-указывается время эксплуатации задвижки. Возможно указать год установки или срок эксплуатации. По-умолчанию расчетный год считается текущий, настроить его можно в настройках расчета надежности (Раздел 9.9, «Настройка расчета надежности»).
- 2. Lambda_t_nad, Средняя интенсивность отказов, 1/(км*ч)- указывается средняя интенсивность отказов запорного устройства на основе статистиче-

ских данных. Если пользователь не вносит статистические данные по отказам оборудования тепловых сетей, то среднее значение интенсивности отказов одного элемента запорно- регулирующей арматуры (одной задвижки), принимается равным 2,28E-7, 1/ч или 0,002 1/год.

(i) Примечание

Если значение поля 0 или Пусто, то данный объект считается полностью надежным.

3. Lambda_r_nad, Расчетная интенсивность отказов, 1/(км*ч)-задается рассчитанная пользователем величина интенсивности отказов. Указывается для уточнения математической модели в случае, если были проведены самостоятельные расчеты.

Примечание

В случае использования данного поля, значения Средней интенсивности отказов в расчете не участвуют.

4. Tr_nad, Расчетное время восстановления, ч - указывается время восстановления данного элементы на основе собственных данных. Используется для уточнения математической модели в случае, если были проведены самостоятельные расчеты.

15.3.5. Потребитель

Для выполнения расчета надежности надо занести следующую информацию по потребителям тепловой сети:

- 1. Beta_nad, Коэффициент тепловой аккумуляции, ч указывается коэффициент тепловой аккумуляции потребителя;
- 2. *Tmin_nad*, *Минимально допустимая температура*, °С- указывается минимально допустимая температура внутреннего воздуха у потребителя, на время устранения аварии.

15.4. Результаты расчета

В результате расчета определяется следующая информация

15.4.1. По участкам тепловой сети

- 1. Trep_nad, Время восстановления, ч
- 2. Mrep nad, Интенсивность восстановления, 1/ч
- 3. Lambda nad, Интенсивность отказов, 1/(км*ч)
- 4. Omega_nad, Поток отказов, 1/ч
- 5. Qot_nad, Относительное кол. отключ. нагрузки

6. Pbreak_nad, Вероятность отказа

15.4.2. По задвижкам

- 1. Trep_nad, Время восстановления, ч
- 2. Mrep nad, Интенсивность восстановления, 1/ч
- 3. Lambda nad, Интенсивность отказов, 1/(км*ч)
- 4. Omega_nad, Поток отказов, 1/ч
- 5. Qot_nad, Относительное кол. отключ. нагрузки
- 6. Pbreak_nad, Вероятность отказа

15.4.3. По потребителям и обобщенным потребителям

- 1. R nad, Вероятность безотказной работы
- 2. К nad, Коэффициент готовности
- 3. Qlost_nad, Средний суммарный недоотпуск теплоты, Гкал/от. период

Глава 16. Коммутационные задачи

16.1. Цель расчета

Коммутационные задачи предназначены для анализа изменений вследствие отключения задвижек или участков сети. В результате выполнения коммутационной задачи определяются объекты, попавшие под отключение. При этом производится расчет объемов воды, которые возможно придется сливать из трубопроводов тепловой сети и систем теплопотребления. Результаты расчета отображаются на карте в виде тематической раскраски отключенных участков и потребителей и выводятся в отчет.

Смотрите также:

- запуск расчета (<u>Раздел 16.3, «Запуск расчета»</u>);
- анализ переключений (<u>Раздел 16.3.1, «Анализ переключений»</u>);
- поиск в слое подложке (<u>Раздел 16.3.2</u>, «Поиск в слое-подложке»);
- настройки (<u>Раздел 16.4, «Настройки»</u>);
- работа со списком объектов (Раздел 16.5, «Работа со списком объектов»);
- работа с браузером результатов расчета (<u>Раздел 16.6, «Просмотр результатов расчета</u>).
- экспорт результатов в EXCEL(<u>Раздел 16.6.3, «Экспорт в MS Excel»</u>).

16.2. Знакомство с окном Коммутационные задачи

Перед запуском расчета познакомимся с окном коммутационных задач (см. <u>Рисунок 16.1</u>, «Знакомство с окном Коммутационные задачи»).

Коммутационны	ые задачи		_ * ×						
Система теплос	Система теплоснабжения								
Анализ перекли	очений Поиск в слое под	ложке	×						
Список перекли	очаемых объектов сети	Г							
🔪 Ключ	Тип	Действие							
3967	Задвижка	Изолировать о	гист						
3971	Задвижка	Отключено							
3969	Задвижка	Отключено							
			e						
			\mathbf{X}						
🔲 Учитывать т	олько изолированную обл	асть							
	Выполнить Настройкі	и Справка (Закрыты						

Рисунок 16.1. Знакомство с окном Коммутационные задачи

- 1. Вкладка выбора расчета Анализ переключений или Поиск в слое подложке
- 2. Список переключаемых объектов тепловой сети
- 3. Кнопка открытия окна настроек
- 4. Кнопка запуска расчета
- 5. Кнопка выбора слоя
- 6. Выбор действия с объектом (отключение, изолирования от источника)
- 7. Кнопка добавления и кнопка удаления объектов в список переключений.

16.3. Запуск расчета

Для запуска коммутационных задач:

1. Выполните команду главного меню Задачи Коммутационные задачи или нажмите

кнопку **н**а панели инструментов. Появится диалоговое окно Коммутационные задачи, (<u>Рисунок 16.2, «Диалог «Коммутационные задачи»»</u>).

Коммутацио	нные задачи	1		_ * ×						
Тепловая сеть Слой										
Анализ переключений Поиск в слое подложке										
Список перекли	очаемых объекто	в сети								
Ключ	Тип		Действие	+						
				- [à.						
 Учитывать только изолированную область Учитывать направление участков для отсекающих устройств Автообновление 										
Выполнить	Применить	Настройки	Справка	Закрыты						

Рисунок 16.2. Диалог «Коммутационные задачи»

2. Нажмите кнопку Слой... и в появившемся диалоговом окне (<u>Рисунок 16.3, «Диалог</u> выбора слоя») с помощью левой кнопки мыши выберите слой тепловой сети.

ТКварталы	ര് 🗊 🏸 😰	<u>Н</u> азад
]]Здания)Напписи	đế 🚯 💋 🛞 🖞	Вперед
Пример тепловой сети	ď 🚺 🖉 🛞 .	Tuched
		Добавить
		Исключить
		Настройка
		Структура
		Клавиша
		OK
		Отмена
		Справка

Рисунок 16.3. Диалог выбора слоя

3. Нажмите кнопку ОК. Далее можно провести анализ переключений (<u>Раздел 16.3.1</u>, <u>«Анализ переключений»</u>) или поиск в слое-подложке (<u>Раздел 16.3.2</u>, <u>«Поиск в слое-подложке</u>).

16.3.1. Анализ переключений

При анализе переключений определяется, какие объекты попадают под отключения, и включает в себя:

• Вывод информации по отключенным объектам сети;

- расчет объемов внутренних систем теплопотребления и нагрузок на системы теплопотребления при данных изменениях в сети;
- отображение результатов расчета на карте в виде тематической раскраски;
- вывод табличных данных в отчет, с последующей возможностью их печати, экспорта в формат MS Excel или HTML.

16.3.1.1. Запуск анализа переключений

Для запуска Анализа переключений:

- 1. Запустите Коммутационные задачи (<u>Раздел 16.3, «Запуск расчета»</u>);
- 2. Выберите вкладку Анализ переключений;
- 3. Нажмите кнопку Настройки для вызова диалога настроек программы (Подробнее о настройке <u>Раздел 16.4</u>, «<u>Настройки</u>»);
- 4. В режиме Выделить выберите на карте запорное устройство (участок), для которого будет производиться отключение (слой при этом должен быть активным, либо удерживайте при выделении объекта клавиши Ctrl+Shift);
- 5. Нажмите кнопку танели. Выбранный объект добавится в список переключаемых объектов сети в диалоговом окне. (Рисунок 16.4, «Список переключаемых объектов»).

Коммутационные зад	цачи		_ * ×
Тепловая сеть			Слой
Анализ переключений Пои	ск в слое подложке		Þ
Список переключаемых объ	ектов сети		
Ключ	Тип	Действие	•
213	Участки	Выключить	
			_
			L.S.
			-
			X
📃 Учитывать только изоли	рованную область		
9 учитывать направление	ччастков для отсекающих ч	стройств	
	,		
Выполнить	Применить Настрой	ки Справка	Закрыть

Рисунок 16.4. Список переключаемых объектов

После выбора на карте автоматически отобразится в виде раскраски расчетная зона отключенных участков сети. (<u>Рисунок 16.5, «Отображение отключений на карте»</u>).

Рисунок 16.5. Отображение отключений на карте

Для удаления объекта из списка выделить его в списке и нажать кнопку 🗖 . При передвижении по списку, на карте автоматически выделяется соответствующий объект;

6. Выберите в поле Действие необходимый вид переключения (<u>Рисунок 16.6, «Работа</u> в окне Коммутационные задачи»). Этот пункт выполнять при необходимости.

пловая сеть		Слої	й
нализ переключ	ений Поиск в слое подложке		
писок переключ	аемых объектов сети	-	_
(люч		Действие	4
34	Задвижка	Изолировать от источни	
319	Задвижка	Отключено	R
			€
			>
] Учитывать тол	њко изолированную область		
9читывать наг	правление участков для отсекающ	их устройств	

Рисунок 16.6. Работа в окне Коммутационные задачи

Виды переключений:

- Включить- Режим объекта устанавливается на «Включен»;
- Выключить Режим объекта устанавливается на «Выключен»;
- Изолировать от источника- Режим объекта устанавливается на «Выключен». При этом автоматически добавляется в список и переводится в режим отключения вся изолирующая объект от источника запорная арматура;

- Отключить от источника- Режим объекта устанавливается на «Выключен». При этом автоматически добавляется в список и переводится в режим отключения вся отключающая объект от источника запорная арматура.
- 7. Нажмите кнопку Выполнить. В результате выполнения задачи появится браузер Просмотр результата, содержащий табличные данные результатов расчета (<u>Рисунок 16.7, «Окно результатов расчета»</u>). Подробнее о работе с браузером результатов расчета <u>Раздел 16.6, «Просмотр результатов расчета»</u>. Вкладки браузера содержат таблицы попавших под отключение объектов сети и итоговые значения результатов расчета.

Параметр Знач Объем воды в подающем тр., куб.м 0.160 Объем воды в обратном тр., куб.м 0.160 Разративания силония силония силония 0.911	чение 0339 0229
Объем воды в подающем тр., куб.м 0.16 Объем воды в обратном тр., куб.м 0.16 Веристика из сталаговино Гиза /и 0.91	0339
Объем воды в обратном тр., куб.м 0.16	0000
Desugnues upprove up grandeurus Expediu 0.91	0333
пасчетная нагрузка на отопление, ткалич о.эт	6000
Расчетная нагрузка на вентиляцию, Гкал/ч 0.000	0000
Расчетная средняя нагрузка на ГВС, Гкал/ч 👘 0.190	0100
Объем воды в системе отопления, куб.м 19.76	85600
Объем воды в системе вентиляции, куб.м 0.000	0000
Объем воды в системе ГВС, куб.м 1.14	0600
Суммарный объем воды, куб. м 21.24	46878

Рисунок 16.7. Окно результатов расчета

При необходимости можно удалить раскраску с карты с помощью кнопки 🗙.

16.3.2. Поиск в слое-подложке

Позволяет осуществить поиск в заданном слое (обычно слой зданий)- подложке объектов, местоположение которых совпадает с местоположением потребителей в слое сети. Результаты поиска отображаются на карте в виде тематической раскраски объектов слоя-подложки и выводятся в отчет.

1. Выберите вкладку Поиск в слое подложке.

Коммутационные зад	ачи		_ * ×
Тепловая сеть		[Слой
Анализ переключений Пои	ск в слое подложке		Þ
Учитывать потребителей:			
🔍 Всех в сети 🔿 Из гр	уппы 🔘 Из списка		
Ключ	Тип	Режим	+
			-
			\mathbf{X}
Выполнить	Применить Настройн	и Справка	Закрыть

Рисунок 16.8. Окно поиска слоя в подложке

- 2. Выберите с помощью переключателей Учитывать потребителей необходимые условия поиска.
 - Всех в сети поиск будет осуществляться для всех потребителей в слое сети, дополнительных настроек производить не надо, и можно сразу производить поиск;
 - Из группы поиск будет осуществляться для потребителей, входящих в текущую группу в слое сети;
 - Из списка поиск будет осуществляться для потребителей, которых пользователь

добавит в список. Для этого следует выделить в режиме ト на карте потребителя,

для которого необходимо произвести поиск. Нажать кнопку ¹ на панели диалога. Выбранный потребитель добавится в список в диалоговом окне. Таким же образом добавьте в список всех необходимых для поиска потребителей (Подробнее о работе со списком <u>Раздел 16.5</u>, «<u>Работа со списком объектов</u>»).

3. Нажмите кнопку Выполнить.

16.4. Настройки

Для вызова диалога Настройки:

- Запустите Коммутационные задачи (1, <u>Раздел 16.3</u>, <u>«Запуск расчета»</u>);
- Нажмите кнопку Настройка (Рисунок 16.9, «Настройки коммутационных задач»).

оммутацио	нные задачи		- •)
Гепловая сеть			Слой
Анализ переклю	чений Поиск в слое подло»	кке	Þ
Список переклю	чаемых объектов сети		
Ключ	Тип	Действие	+
			_
			D
			×
Учитывать то	лько изолированную област	гь	
9читывать на	аправление участков для ото	секающих устройств	
Автообновле	ние		
B	ыполнить Применить	Настройки Справка	Закрыты

Рисунок 16.9. Настройки коммутационных задач

Открывшийся диалог настроек имеет следующие вкладки:

Слой сети

В списке Выберите слой сети выберите нужный слой сети и укажите вид сети (Тепловая сеть) в списке Выберите вид сети для правильного расчета итоговых значений, (Рисунок 16.10, «Вкладка «Слой сети» диалога «Настройки»»»).

лой сети	Анализ переключени	ий Слой подложка	Раскраска	HASP	
Puttopurg	0.000 0.000				
-	слой сеги.				
Геплова:	я сеть				~
Выберите	вид сети:				
Теплова	а сеть				
Водопро	зодная сеть 😽				
Газовая	сеть				
Другой т	ип				
Другой т	ип				
Другой т	ип				
Другой т Единицы	ип измерения:				
Другой т Единицы	ип				
Другой т Единицы Тепловые	ип измерения: нагрузки Гкал/ч	~			
Другой т Единицы Тепловые	ип измерения: нагрузки Гкал/ч	~			
Другой т Единицы Тепловые	ип измерения: нагрузки Гкал/ч	v			
Другой т Единицы Тепловые	ип измерения: нагрузки Гкал/ч	v			

Рисунок 16.10. Вкладка «Слой сети» диалога «Настройки»

Анализ переключений

лои сети	Анализ переключении	Слой подлож	ка Раскраска НАЗР	
Выберите	типы объектов сети, уча	оствующие в а	нализе	
- Tenr - C - S - S - S - S - S - S	ювая сеть Источник Узел Потребитель Насосная стабщия Задвижка Шивстии			< <
Доступны	е поля:		Поля для вывода:	
Номерии Геодезич Высота з Расчетна Расчетна Расчетна Коэффиц Коэффиц	сточника неская отметка, м здания потребителя, м зя темп. сет. воды на вж зя нагрузка на вентиляц изя нагрузка на ГВС, Гкал циент изменения нагруз циент изменения нагруз	^ > > < < <	Адрес узла ввода Наименование узла Номер схемы подключени Расчетная нагрузка на ото Число жителей	я потреби опление, Г
🖌 Испол	ьзовать слой подложкч			

Рисунок 16.11. Настройка анализа переключений

В списке Выберите типы объектов сети, участвующие в анализе отображается перечень всех типов для выбранного слоя сети. Для того чтобы определенный тип элементов сети вошел в отчет по поиску изменений в сети, необходимо включить его в списке типов и выбрать нужные поля для вывода в отчет.

Для включения типа в отчет с помощью левой кнопки мыши установите флажок рядом с нужным объектом (<u>Рисунок 16.11, «Настройка анализа переключений»</u>).

При выделении названия объекта в верхней части окна, в списке Доступные поля отобразится список всех полей базы данных выбранного объекта, которые могут быть включены в отчет. В списке Поля для вывода отобразится список полей, которые были выбраны для включения в отчет.

Для включения нужных полей в отчет следует выделить необходимые поля в левом списке, и нажать кнопку . Выбранные поля перейдут в правый список. Для того чтобы добавить сразу все поля нужно нажать кнопку ». И наоборот, с помощью кнопок < и < поля удаляются из правого списка.

Слой подложка

лой сети	Анализ переключений	Слой подложка	Раскраска Н	HASP
ίας - Cros	і подложка Кварталы Здания Надпицу і сети			^
 Доступны	е поля:	По	оля для вывода:	•
Квартал Символ д Адрес Код улиц Обслужи Количест Коды узл	цома ы вающая организация во этажей цов подключения потр.	> 9 + K + K + K + K	лица омер дома орпус ринадлежность од ЖЭУ	
🗸 Вывод 🖌 Разде	цить отчет льный отчет по режима	м		

Рисунок 16.12. Настройка слоя-подложки

Слой-подложка – это слой, в котором будет осуществляться поиск и раскраска объектов, попадающих под потребителей сети. (Обычно слой зданий).

Для выбора слоя подложки следует установить флажок рядом с требуемым слоем в верхнем списке вкладки.

Объекты выбранного слоя подложки будут раскрашены в зависимости от состояния потребителя изображенного на этом объекте, например, здания будут окрашены под выключенными потребителями (см. <u>Рисунок 16.13, «Отображение отключений на тематической раскраске»</u>).

Рисунок 16.13. Отображение отключений на тематической раскраске

Для того чтобы получить информацию о зданиях, попавших под отключение следует установить флажок Выводить отчет.

Для того чтобы получить информацию по объектам из слоя подложки следует выделить курсором название слоя подложки, в списке Доступные поля вкладки отобразятся

поля, которые могут быть добавлены в отчет. В списке Поля для вывода отобразится список полей, которые были выбраны для включения в отчет.

Для включения нужных полей в отчет выделите поля в списке Доступные поля и нажмите кнопку . Выбранные поля перейдут в список Поля для вывода. Для того чтобы добавить сразу все поля нажмите кнопку . И наоборот, вы можете с помощью кнопок и удалять поля из правого списка.

При установленном флажке Раздельный отчет по режимам в браузере Просмотр результата результаты поиска группируются в отдельные таблицы, в зависимости от режимов потребителей.

Раскраска

			пастроики		<u> </u>	
Слой сети	Анализ пе	реключений	Слой подложка	Раскраска	HASP	
Раскраск	а слоя подл	южки по сост	гоянию потребите	лей сети		
🖌 Включ	ен 🗸	Выключен	🖌 Не опред	елен		
	_					
🖌 Раскр	аска отключ	енных/изоли	ированых участков	з сети		
🗹 Раскр	аска отключ	енных/изоли	ированых участкое	з сети		
✓ Раскр.	аска отключ	енных/изоли	ированых участкое	з сети		
Раскра Рас Расскра Рас Расскра Рас Рас Рас Рас Рас Рас Рас Рас Рас Ра	аска отключ	енных/изоли	ированых участко	з сети		
Раскр.	аска отключ	енных/изоли	ированых участкое	в сети		
🖌 Раскр.	аска отключ	енных/изоли	ированых участко	з сети		

Рисунок 16.14. Настройка раскраски слоя подложки

В верхней части диалога под строкой Раскраска слоя подложки по состоянию потребителей сети задаются стили и цвета заливки площадных объектов слоя подложки в зависимости от режима соответствующих потребителей. Заданный стиль для состояния используется только при установке соответствующего флажка. Для задания стиля и цвета заливки нужного режима нажмите кнопку под названием состояния. В открывшемся диалоге (см. <u>Рисунок 16.15, «Настройка раскраски площадных объектов»</u>) выберите нужные параметры.

Рисунок 16.15. Настройка раскраски площадных объектов

Режим Не определен соответствует ситуации, когда на один объект слоя подложки попадает несколько потребителей с разными режимами.

При установке флажка Раскраска отключенных/изолированных участков сети также задается задать стиль и цвет участков сети отключенных/изолированных от источников. Для задания нужного стиля и цвета нажмите кнопку под флажком. В появившемся диалоге выберите нужные параметры.

	Стиль линии
Цвет: Стиль: Толщина:	Образец: Е÷
	ОК Отмена

Рисунок 16.16. Раскраска отключенных/изолированных участков сети

16.5. Работа со списком объектов

В список объектов вы можете добавлять необходимые объекты из активного слоя карты. Для этого надо:

- 1. В режиме Выделить выберите на карте запорное устройство (участок), для которого будет производиться отключение (слой при этом должен быть активным, в противном случае требуется удерживать при выделении объекта Ctrl+Shift);
- 2. Нажмите кнопку 🗣. Объект добавится в список.

Для удаления объекта из списка:

- 1. Выберите его в списке;
- 2. Нажать кнопку .

При передвижении по списку, на карте автоматически выделяется соответствующий объект. Если объект не попадает в видимую область карты, то вид устанавливается таким образом, чтобы объект оказался в центре карты.

При выбранной вкладке Анализ переключений, с помощью кнопок 🕰 и 🗃 вы можете просмотреть и распечатать отчет по списку объектов. Поля для подготовки отчета берутся из настроек соответствующего типа объекта сети (Подробнее о настройке анализа переключений Раздел 16.3.1, «Анализ переключений»).

🕞 Zulu 7.0 - [Пример тепловой сети]					
: 🛃 🕒 🛯 📰 100% 🗸	Зак	:р <u>ы</u> ть			
			Задвиж	:Ka	
			Ключ 187	Тнп объекта Задвижка	
			Задвиж	ika Q	
			Ключ	Тип объекта	
			185	Задвижка	
			189	Задвижка	

Рисунок 16.17. Отчет по списку отключаемых объектов

16.6. Просмотр результатов расчета

После запуска анализа переключений на экране сразу появляется окно с результатами расчета, показанное на <u>Рисунок 16.18</u>, «Окно результатов расчета». Вкладки окна содержат таблицы попавших под отключение объектов сети (если указано в настройках) и итоговые значения результатов расчета.

Просмотр результата	_ • ×
역 🛎 🗳 📌	
Потребитель Участки ЦТП Итоговые значени	я 🕨
Параметр	Значение
Объем воды в подающем тр., куб.м	16.650572
Объем воды в обратном тр., куб.м	16.650572
Расчетная нагрузка на отопление, Гкал/ч	2.165000
Расчетная нагрузка на вентиляцию, Гкал/ч	0.000000
Расчетная средняя нагрузка на ГВС, Гкал/ч	0.120000
Объем воды в системе отопления, куб.м	50.984600
Объем воды в системе вентиляции, куб.м	0.000000
Объем воды в системе ГВС, куб.м	0.720000
Суммарный объем воды, куб. м	85.005744

Рисунок 16.18. Окно результатов расчета

16.6.1. Навигация

Окно Просмотр результата содержит табличные данные результатов расчета, а также таблицы попавших под отключения объектов. Для того, чтобы сделать активной нужную таблицу щелчком левой кнопкой мыши выберите соответствующую вкладку, например, Потребитель, как показано на <u>Рисунок 16.19, «Поиск выключенного объекта на карте»</u>.

гки ї ЦТП ї Итого	овые значения	۱.
Номер схем	Расчетная нагр	Число жителей
2	0.146	100
4	0.049	100
4	0.4	100
È	0.3	100
2	0.285	100
2	0.285	100
2	0.4	100
2	0.3	100
	ни ц III итог Номер схем 2 4 4 2 2 2 2 2 2 2	нипп итоговые значения Номер схем Расчетная нагр 2 0.146 4 0.049 4 0.4 2 0.3 2 0.285 2 0.4 2 0.3 2 0.285 2 0.4 2 0.3

Рисунок 16.19. Поиск выключенного объекта на карте

При выделении записи в таблице, на карте автоматически выделяется соответствующий объект. Если объект не попадает в видимую область карты, то вид устанавливается таким образом, чтобы объект оказался в центре карты.

16.6.2. Печать отчета

Для создания отчета по табличным данным результатов расчета:

- 1. Перейдите на нужную вкладку. (Потребитель, Итоговые значения и т.д.);
- Нажмите кнопку . Появится диалог создания отчета. (см. <u>Рисунок 16.20, «Диалог</u> создания отчета»).

	Отчет ×			
Â.	Шаблоны отчетов:			
	(стандартный)	*		
	Новый Изменить	Удалить		
	🎒 Печать 🛕 Просмотр	Отмена		

Рисунок 16.20. Диалог создания отчета

3. Для предварительного просмотра отчета нажмите кнопку Просмотр. Для печати отчета нажмите кнопку Печать.

16.6.3. Экспорт в MS Excel

Для экспорта в электронную таблицу MS Excel табличных данных результатов расчета:

1. Нажмите кнопку а. Появится диалог экспорта в MS Excel. (см. <u>Рисунок 16.21</u>, «<u>Диалог экспорта в Excel</u>»).

X	Шаблоны отчетов:	
	(стандартный)	×
	Новый Изменить	Удалить
D: We	IK NUTHET, XIS	U030p
Имя лист	a:	
64	нты	

Рисунок 16.21. Диалог экспорта в Excel

- 2. В строке Путь к книге Excel нажмите кнопку Обзор и укажите путь и имя сохраняемого файла. В поле Имя листа введите имя листа, в который будут сохранены данные;
- 3. Для предварительного просмотра отчета нажмите кнопку Просмотр;
- 4. Нажмите кнопку Сохранить.

16.6.4. Экспорт в HTML

Для экспорта в HTML страницу табличных данных результатов расчета:

1. Нажмите кнопку . Появится диалог экспорта в HTML. (см. <u>Рисунок 16.22, «Диа-</u> лог экспорта в Html»).

Отчет		
	Шаблоны отчетов:	
<₽	(стандартный)	~
	Новый Изменить	Удалить
имя фаил	a.	Обзор
	Сохранить 🛕 Просмотр	Отмена

Рисунок 16.22. Диалог экспорта в Html

- 2. В строке Имя файла нажмите кнопку Обзор и укажите путь и имя создаваемого HTML файла;
- 3. Для предварительного просмотра отчета нажмите кнопку Просмотр;

4. Нажмите кнопку Сохранить.

Глава 17. Пьезометрический график

Одним из основных инструментов анализа результатов расчетов для тепловых сетей является пьезометрический график. Этот график изображает линии изменения давления в узлах сети по выбранному маршруту, например, от источника до одного из потребителей.

Пьезометрический график строится по указанному пути. Путь указывается автоматически, достаточно определить его начальный и конечный узлы. Если путей от одного узла до другого может быть несколько, то по умолчанию путь выбирается самый короткий, в том случае если нужен другой путь, то надо указать промежуточные узлы.

17.1. Знакомство с окном пьезографика

Перед запуском расчета познакомимся с окном пьезографика (см. <u>Рисунок 17.1, «Зна-комство с окном пьезографика»</u>).

Рисунок 17.1. Знакомство с окном пьезографика

- 1. Панель инструментов пьезометрического графика
- 2. Область графика
- 3. Обозначение объекта тепловой сети на графике

- 4. Ячейка с наименованием объекта указанным выше на графике
- 5. Область табличных данных связанных с объектами

Условные обозначения по-умолчанию

- линия давления в подающем трубопроводе красным цветом;
- линия давления в обратном трубопроводе синим цветом;
- линия поверхности земли пунктиром;
- линия статического напора голубым пунктиром;
- линия давления вскипания оранжевым цветом.

17.2. Построение пьезометрического графика

Для того чтобы построить пьезометрический график:

- Нажмите на панели навигации кнопку Поиск пути ^{*};
- Подведите курсор мыши к начальному объекту (например, к насосу) и нажмите левую кнопку мыши, после чего на выбранном объекте будет установлен красный флажок (см. Рисунок 17.2, «Построение пьезометрического графика»а);
- 3. Щелчком левой кнопкой мыши поставьте флажок на конечном объекте (например, проблемном потребителе). При существовании нескольких маршрутов до конечного узла (в кольцевых сетях) установите флажки на промежуточных узлах сети (см. <u>Рисунок 17.2, «Построение пьезометрического графика»</u>b). Также можно указать участки, по которым не будет проходить маршрут. Для этого, удерживая клавишу Ctrl, щелкните левой кнопкой мыши по тем участкам, по которым не будет проходить маршрут, они отметятся красным крестиком;
- 4. Подведите курсор к конечному узлу и установите флажок двойным нажатием левой кнопки мыши, в результате на конечном узле будет установлен флажок, а выбранный маршрут для построения графика высветится красным цветом (см. <u>Рисунок 17.2</u>, «Построение пьезометрического графика» с);

Рисунок 17.2. Построение пьезометрического графика

5. Нажмите кнопку Пьезометрический график Эдля построения графика и открытия окна пьезометрического графика (см. <u>Рисунок 17.3, «Окно пьезометрического</u> <u>графика»</u>).

Рисунок 17.3. Окно пьезометрического графика

На пьезометрическом графике отображаются:

- линия давления в подающем трубопроводе красным цветом;
- линия давления в обратном трубопроводе синим цветом;
- линия поверхности земли пунктиром;
- линия статического напора голубым пунктиром;
- линия давления вскипания оранжевым цветом.

Рисунок 17.4. Пример пьезометрического графика

17.2.1. Панель инструментов пьезометрического графика

■ - кнопка обновления или добавления графика. Для выбора нажмите - и в открывшемся меню выберите требуемый пункт:

- Обновить для перестроения графика после изменения пути или после изменения параметров;
- Добавить для добавления нового графика к существующему, при этом первый график будет отображаться затененным цветом.
- 🗞 кнопка разворота пьезометрического графика. Меняются местами начало и конец пути графика;
- 75% изменение размера графика. Для выбора размера нажать и выбрать желаемый размер в процентах от исходного;
- 🛚 🚄 кнопка выбора принтера и запуска печати пьезометрического графика;
- 🖾 кнопка предварительного просмотра страницы распечатываемого пьезометрического графика;
- 🔊 кнопка редактирования макета страницы, изменение ориентации листа, изменения размера полей страницы;
- 🔟 кнопка изменения или создания шаблона графика;
- Пример 3
 окно выбора шаблона пьезометрического графика, для выбора нажмите • и в открывшемся меню выберите требуемый шаблон, по умолчанию используется стандартный;
- кнопка сохранения нового шаблона пьезометрического графика;
- Кнопка удаления шаблона пьезометрического графика. Маршрут строится автоматически, достаточно указать его начальный и конечный узлы. Если путей от одного узла до другого может быть несколько, то достаточно указать ряд промежуточных узлов.

17.3. Сохранение пьезометрического графика

Для того чтобы определенный пьезометрический график всегда можно было открыть и просмотреть, график можно сохранить в файл.

Для сохранения графика:
- 1. После построения пьезометрического графика выберите в диалоговом окне График меню Файл|Сохранить (для сохранения копии графика Файл|Сохранить как);
- 2. В появившемся диалоговом окне укажите путь и в строке Имя файла задать имя для сохраняемого графика;
- 3. Нажмите кнопку Сохранить.

Для открытия ранее сохраненного графика:

- 1. В диалоговом окне График выберите пункт меню Файл|Открыть;
- 2. В появившемся окне укажите файл для открытия и нажмите кнопку Открыть.
- К сохраняемому графику можно добавить комментарий или примечание, для этого:
- 1. В диалоговом окне График выберите пункт меню Файл Варианты;
- 2. В появившемся окне Варианты графика нажмите кнопку Добавить, после чего появится окно, в котором будет предложено внести комментарий к графику;
- 3. Введите комментарии, нажмите кнопку ОК;
- 4. Нажмите кнопку Закрыть для окончания ввода комментариев.

После добавления комментариев пьезографик обязательно надо сохранить.

	Добавить	вариант		×
Сохранено:	22.09.2014 10:11	:17		
Сохранил:	802499			
Заметки:				
				-
График от К	(отельной Северн	юйдоЦТП№	2	\sim
График от М	(отельной Северн	юйдоЦТП№	2	^
График от М	(отельной Северн	юйдоЦТП№	2	^
График от М	(отельной Северн	юйдоЦТП№	2	^
График от М	Котельной Северн	юйдоЦТП№	.2	

Рисунок 17.5. Варианты графика

17.4. Сохранение пьезометрического графика в Ms Word и Excel

Для сохранения пьезометрического графика в Microsoft WordTM или ExcelTM:

1. Чтобы скопировать весь пьезографик, в любом месте пьезометрического графика нажмите правую клавишу мыши, после чего в открывшемся контекстном меню вы-

берите пункт Выделить все (см. <u>Рисунок 17.6, «Выделение всего пьезометрическо-</u> го графика»). В результате весь график выделится рамкой.

Рисунок 17.6. Выделение всего пьезометрического графика

Если нужно копировать только шкальную часть пьезометрического графика то для этого выделите область таблицы графика, которую необходимо перенести, нажав на левую клавишу мыши и удерживая ее растяните область копирования до необходимых размеров, (см. <u>Рисунок 17.7</u>, «Выделение графика под таблицей»).

Рисунок 17.7. Выделение графика под таблицей

- При копировании всего пьезографика нажмите правую кнопку мыши в любом месте графика, а при копировании только шкальной части щелкните правой кнопкой в выделенной области и в появившемся контекстном меню выберите пункт Копировать;
- 3. Для того чтобы вставить скопированный график откройте программу, например Word или Excel, установите курсор в необходимое место документа, нажмите правую кнопку мыши и в открывшемся контекстном меню выберите пункт Вставить.

17.5. Экспорт пьезометрического графика

Система позволяет экспортировать пьезометрический график в форматы BMP (*.bmp) и Enhanced Metafile (*.emf).

Для экспорта пьезометрического графика:

- 1. В окне График выберите пункт меню Файл|Экспорт...;
- 2. В появившемся диалоговом окне в строке Имя файла задайте имя и путь для нового файла;
- 3. В строке Тип файла выберите тип файла, который нужно получить в результате экспорта;
- 4. Нажмите кнопку Сохранить;
- 5. При экспорте в формат bmp можно дополнительно изменить параметры экспортируемого файла:
 - Формат (монохромный рисунок, 256-цветный рисунок, 24-разрядный рисунок);
 - Размер документа (ширина (мм), высота (мм), разрешение (dpi)).

При экспорте в формат emf можно изменить только размеры документа;

6. Нажмите кнопку ОК.

17.6. Совмещение пьезометрических графиков

Пьезометрические графики можно совмещать (накладывать друг на друга), для этого:

- 1. Постройте первый пьезографик (<u>Раздел 17.2, «Построение пьезометрического гра</u><u>фика»</u>) или откройте ранее сохраненный график (см. раздел <u>Раздел 17.3, «Сохране-</u><u>ние пьезометрического графика»</u>);
- 2. Отметьте новый путь для построения второго графика или используйте оставшийся;
- 3. В окне График нажать на кнопки 🛃 и в открывшемся меню выбрать пункт Добавить. После чего новый график будет наложен на предыдущий. При этом первый график будет прорисован более тусклым цветом, а второй график более ярким. (см. Рисунок 17.8, «Совмещение пьезометрических графиков»).

Рисунок 17.8. Совмещение пьезометрических графиков

17.7. Быстрая настройка пьезометрического графика

Наиболее часто используемые настройки пьезометрического графика можно задать с помощью контекстного меню, открывающегося щелчком правой кнопки мыши в области окна График.

Быстрая настройка графика с помощью контекстного меню позволяет:

- 1. Выделить пьезографик или табличную часть;
- 2. Изменить внешний вид пьезографика;
- 3. Настроить масштаб пьезографика;
- 4. Настроить кривые пьезографика и ячейки таблицы;
- 5. Изменить свойства пьезографика.

Рисунок 17.9. Быстрые настройки графика

Выделение пьезографика

Выделить всю область пьезографика можно с помощью пункта Выделить все контекстного меню. Выделение может понадобиться для дальнейшего копирования и вставки пьезографика в какую либо программу, например в Microsoft WordTM или Microsoft ExcelTM (см. раздел <u>Раздел 17.4, «Сохранение пьезометрического графика в</u> <u>Ms Word и Excel</u>»).

Изменение внешнего вида пьезографика

При выборе пункта Вид контекстного меню откроется дополнительное меню со следующими опциями:

- 1. Затенять при наложении- при совмещении нескольких пьезометрических графиков можно выбрать будет ли построенный ранее график затеняться или нет (<u>см. раздел</u> <u>Совмещение пьезометрических графиков</u>);
- 2. Таблица- с помощью данной опции можно включать и выключать отображение табличной (или шкальной) области графика;
- 3. Скрывать ячейки- с помощью данной опции можно скрыть частично видимые ячейки таблицы (в случае их наложения друг на друга).
- 4. Показать/убрать колонки...- с помощью данной опции имеется возможность скрыть или отобразить колонки по объектам, отображенным в шкальной области графика. При выборе данной опции появится окно со списком колонок пьезографика, для отображения колонки напротив ее названия должна быть установлена галочка, в противном случае колонка не отображается.

Изменение масштаба пьезографика

При выборе пункта Масштаб контекстного меню откроется дополнительное окно настройки масштаба графика, в котором можно определить масштаб для осей X и Y:

- 1. без масштаба (равномерные отсчеты);
- 2. подбирать масштаб автоматически;
- 3. соблюдать определенный масштаб (в окошке справа необходимо указать этот масштаб).

Помимо настройки осей имеется возможность включения или отключения отображения нулевой геодезической отметки на графике. Для ее отключения надо снять флажок Всегда включать ноль в диапазон шкалы, для включения нуля наоборот установить флажок.

Настройка кривых пьезографика

При выборе опции Кривые откроется дополнительное окно со списком всех кривых графика:

Рисунок 17.10. Список кривых пьезометрического графика

Для того чтобы скрыть или отобразить ранее скрытую кривую надо сделать щелчок левой кнопкой мыши слева от названия кривой на значке «глаза».

Двойной щелчок левой кнопкой мыши на названии кривой откроет диалоговое окно по настройке кривой (<u>Раздел 17.8, «Создание нового шаблона пьезометрического графика»</u>).

Изменений свойства пьезографика

Свойства пьезографика можно изменить, выбрав пункт контекстного меню Свойства.

17.8. Создание нового шаблона пьезометрического графика

По умолчанию пьезографик строится по стандартному шаблону, со стандартными настройками, но в системе имеется возможность создать новый шаблон с необходимыми параметрами.

Для создания нового шаблона:

 Установите курсор в окне выбора шаблона графика и задайте новое имя шаблона (стандартная)
 Нажмите кнопку лля сохранения нового шаб-

лона;

2. Нажмите кнопку редактора шаблона и выберите слой редактируемого пьезометрического графика (см. <u>Рисунок 17.11, «Окно выбора слоя»</u>).

	Выберите источник	данных	×
Рад Ва	ыберите слой, структура и данны пользованы при построении гра	е которого буд; фика.	ут
Т	епловая сеть		Обзор
		ОК	Отмена

Рисунок 17.11. Окно выбора слоя

3. После выбора слоя нажмите ОК.

Примечание

По умолчанию указывается тот слой, который является активным в загруженной карте.

После нажатия ОК появится следующее окно:

	График - Новый 🛛 🔍
График - Пьезометрическ Фон и сетка Ось Х Ось У Кривые • ~ Геодезическая отметка • ~ Напор в обратном трубс	График - Повый График Название графика: Пьезометрический график Вид:
 A Напор в подающем труб Высота зданий Потери на шайбе на под Потери на шайбе на обр Линия вскипания Линия статического наг Таблица Наименование узла Гесцезическая высота, Напор в обратном трубс Располагаемый напор, Длина участка, м 	масштаб по X:
Ф = диаметр участка, м ⊕ = Потери напора в подаюї ∨ < >	О брать из поля ОК Отмена Применить

Рисунок 17.12. Конструктор пьезометрического графика

В левой части диалогового окна располагается дерево настроек, которое состоит из трех разделов:

- 1. График;
- 2. Кривые;
- 3. Таблица.

17.8.1. Раздел График

Установив курсор на заголовок График можно настроить масштабирование графика: масштабировать вручную, автоматически по оси X и Y или вообще не придерживаться

масштаба, а использовать равномерные отсчеты. При масштабировании графика выбирается способ определения длины участка- по масштабу с карты или по значению, записанному в поле базы данных по участкам сети. Ниже показан пример графика использующего автоматический подбор масштаба по оси X и Y.

Рисунок 17.13. Пример автоматического масштаба графика

При желании задать масштаб графика вручную необходимо установить маркер напротив строки Соблюдать масштаб и в поле справа ввести с клавиатуры требуемый масштаб, после чего нажать кнопку Применить.

Установив курсор на подзаголовок Фон и сетка, можно задать параметры отображения фона и сетки графика.

	График - Новый		×
График - Пьезометрическ ∧ — Фон и сетка — Ось Х — Ось Х — Ось У Кривые — К Геодезическая отметка — Анапор в обратном трубс — Анапор в подающем труб — Анапор в подающем труб — Анапор в подающем труб — Анапор в подающем труб — Анапор и подающем труб — С Потери на шайбе на пор — Опотери на шайбе на пор — С Потери на шайбе на пор — С Потери на шайбе на пор — Е Наименование узла — Е Памнаи статического наг Таблица — Е Памненование узла — Е Располагаемый напор, — Е Длина участка, м — Е Потери напора в подаю Г	Фон и сетка Фон: цвет фона: цвет рамки: Сетка: по оси X: Фоновные линии промежуточные линии цвет линий: (авто) У	по оси Y: ✓ основные линии ✓ промежуточные линии	-
	ОК	Отмена Применит	ъ.

Рисунок 17.14. Настройка фона и сетки

Установив курсор мыши на подзаголовок Ось X или Ось Y можно изменить параметры отображения осей X и Y, такие как: стиль линии отображающей ось, количество и внешний вид делений оси, внешний вид заголовка шкалы.

рафик - Пьезометрическ 🔺	Ось Ү		
— Фонисетка			
— Ось Х	Вид		
Ось Ү	🗌 Отображать линию оси на графике		
	Стиль линии ————		
			_
	цвет: (авто) 👽 толщина на экране:	1 пкс 🖨	
🕂 🔨 Высота зданий	то диние при печати:	0.1	-
🗄 🔨 Потери на шайбе на под	толщина при нечати.	U.TMM	
🗄 🔷 Потери на шайбе на обр			
🗄 🔷 Линия вскипания	Шкалы		-
🗄 🔨 Линия статического наг	8		_
аблица	9 Название	Добавить	
🔄 🚍 Наименование узла	🗹 Напор, м (основная)		
🗄 😑 Геодезическая высота,		Эдалить	
🎚 🚍 Напор в обратном трубс		Свойства	
🗐 🚍 Располагаемый напор,		CDONCT DO	
🗐 🚍 Длина участка, м			
🗐 🚍 Диаметр участка, м			
🛓 🚍 Потери напора в подаю 🎽			

Рисунок 17.15. Настройка оси У

17.8.1.1. Шкала

Для оси Y можно провести дополнительные настройки шкалы. Для этого следует в окне Ось Y в правой нижней части окна сделать двойной щелчок левой кнопкой мыши по шкале Напор, м (основная). Откроется окно настроек шкалы.

Вид Интервал Шрифт п	одписей Шрифт заголовка
Вид	Деления: ————
 отображать шкалу линия шкалы 	 ✓ основные ● наружу ✓ промежуточные ○ внутрь ✓ подписи
Стиль линий ————	
цвет: (авто) 🗸	толщина на экране: 1 пкс 🚔
	толщина при печати: 0.1 мм 🖨
Заголовок шкалы ———	
Напор, м	
🗹 отображать заголов 🗌 поверх графика	ок

Рисунок 17.16. Настройка шкалы пьезографика

Окно настроек шкалы имеет следующие вкладки:

• Вид – в этой вкладке настраивается внешний вид шкалы (цвет линии, толщина, деления шкалы), а также задается заголовок шкалы;

• Интервал – позволяет настроить интервал значений (максимальное, минимальное значение, цена промежуточных делений), а также выбрать размерность шкалы.

Интервал значений по оси X нельзя изменить при выбранном режиме без масштаба (равномерные отсчеты).При выборе подзаголовка Интервал для оси Y в разделе Дополнительно можно включить\отключить функцию Всегда отображать ноль в диапазоне шкалы. При убранном флажке ноль отображаться не будет, при этом минимальное значение шкалы Y будет подобрано автоматически. Данная функция удобна при больших значениях геодезических отметок;

- Шрифт подписей в этой вкладке настраивается внешний вид подписей шкалы (шрифт, начертание, размер, цвет);
- Шрифт заголовка в этой вкладке настраивается внешний вид заголовка шкалы (шрифт, начертание, размер, цвет).

17.8.2. Раздел Кривые

При установке курсора на заголовок Кривые можно выбрать состав отображаемых кривых на пьезометрическом графике. При желании скрыть какую либо кривую необходимо убрать флажок слева от наименования требуемой кривой.

Рисунок 17.17. Настройка кривых пьезометрического графика

При установке курсора на подзаголовок с наименованием кривой, например Напор в подающем трубопроводе, можно отредактировать вид, название кривой и выбрать шкалу к которой привязана данная кривая.

	График - Новый 🗙
График - Пьезометрическ ∧ Фон и сетка Ось Х Ось У Кривые Ф ~ Геодезическая отметка Ф ~ Напор в обратном трубс Ф ~ Высота зданий Ф ~ Высота зданий Ф ~ Потери на шайбе на пор Ф ~ Потери на шайбе на пор Ф ~ Потери на шайбе на обр Ф ~ Линия статического наг Таблица В = Наименование узла Ф = Папор в обратном трубс Ф = Длина участка, м Ф = Длина участка, м Ф = Длинар участка, м Ф = Потери напора в подаю	Напор в подающем трубопроводе Название: Напор в подающем трубопроводе Вид: Вид: Видимая вспомогательная Привязка: шкала по X: (основная) шкала по Y: Напор, м (основная)
	ОК Отмена Применить

Рисунок 17.18. Настройка кривой

При установке курсора на подзаголовок Объекты можно выбрать объекты тепловой сети, для которых будут отображаться точки кривой.

График - Пьезометрическ 🔺	Объекты - На	пор в подающе	м трубопроводе	
 Фон и сетка Ось Х Ось У Кривые ↑ Геодезическая отметка ↑ Чапор в обратном трубс 	Объект: [вс Др За Ис На	е символьные) осселирующий уз движка (ID=5) точник (ID=1) сосная станция (I	зел (ID=7) D=4) 🗸	Добавить Удалить Изменить
 Напор в подающем труб Объекты Объекты Стиль Стиль Надписи А Высота зданий Потери на шайбе на под Потери на шайбе на обр Линия вскипания Линия вскипания Линия вскипания Памменование узла Е Напор в обратном трубс Е Располагаемый напор, 	на графике:	Формулы для:	точек кривой d'') ий трубопровад	v

Рисунок 17.19. Подраздел «Объекты»

При установке курсора на подзаголовок Стиль имеется возможность определить внешний вид выбранной кривой. Можно настроить цвет, толщину кривой, а также отображение узлов кривой.

	График	- Новый
График - Пьезометрическ 🔺	Стиль - Напор в	подающем трубопроводе
Фон и сетка Ось и Ось у Кривые ~ Геодезическая отметка ~ Чапор в обратном труб Объекты Объекты Объекты Объекты Объекты Объекты Объекта зданий	Вариант:	Линии: швет: Стиль: толщина на экране: толщина при печати: отображать узлы Форма: Фор
 Опотери на шайбе на под Потери на шайбе на под Потери на шайбе на обр Линия скипания Линия скипания Потери на шайбе на обр Линия статического наг Таблица Таблица Таблица Таблица Таблира Таблира Наименование узла Таблира Потери обратном трубс Засторатаемый напор, 	< >>	Штриховка цвет: (авто) V стиль: V цвет2: (авто) V тип: нет V
		ОК Отмена Применить

Рисунок 17.20. Подраздел «Стиль кривой»

17.8.2.1. Отображение узлов

Для отображения узлов на пьезографике необходимо установить флажок Отображать узлы. Можно указать форму узла (выбрать в выпадающем окошке форма), и в окошке размер задать размеры выбранного символа.

График - Пьезометрическ ∧ Фон и сетка Ось Х Ось У Кривые № ~ Геодезическая отметка № ~ Напор в обратном трубс ↓ Обе ист. 10 ↓ Осанорание трубс	подающем трубопроводе Линии: цвет: стиль: толщина на экране: З пкс
ОсьХ ОсьХ ОсьХ Кривые	Линии:
Осовский — Стиль — Надписи — А Потери на шайбе на под — Потери на шайбе на под — Лотери на шайбе на обр — Линия статического наг Таблица — Е Наименование узла — Е Наименование узла — Е Наипор в обратном трубс — Располагаемый напор, ×	толщина при печати: 0.8 мм 👻 V отображать узлы Форма: v размер: 2.5 мм v Штриковка цвет: (авто) v стиль: v цвет2: (авто) v тип: нет v

Рисунок 17.21. Включение отображения узлов на кривой

17.8.2.2. Штриховка

В разделе Штриховка можно указать область и внешний вид штриховки, для этого выбрать тип штриховки:

• нет;

- до оси Х;
- до другой кривой;
- на заданную ширину.

При выборе типа на заданную ширину ниже необходимо указать в миллиметрах ширину штриховки, а при выборе типа до другой кривой необходимо указать кривую, до которой будет осуществляться штриховка. В окошке цвет можно выбрать- цвет штриховки, в окошке стиль- стиль отображения штриховки.

I рафик - Пьезометрическ 🔺	Стиль - Напор в	подающем трубопроводе
Фон и сетка Ось Х Ось Х Ось У Кривые ~ Геодезическая отметка ~ Напор в обратном трубс ~ Иапор в обратном трубс ~ Объекты Объекты Стиль Надписи ~ Высота зданий ~ Потери на шайбе на пор ~ Линия вскипания ~ Линия сатического наг Таблица = Енеодезическая высота, = Напор в обратном трубс = Располагаемый напор, ~	Вариант:	Линии: цвет: Стиль: толщина на экране: толщина при печати: Форма: Форма: Форма: Титиковка цвет: цвет: цвет: Стиль: Ст

Рисунок 17.22. Настройка штриховки

Ниже на рисунке можно увидеть результат штриховки от кривой Напор в подающем трубопроводе до кривой Напор в обратном трубопроводе. А также штриховка от кривой Геодезическая отметка до кривой Х.

Рисунок 17.23. Пример графика со штриховкой

17.8.2.3. Надписи на пьезометрическом графике

При установке курсора на подзаголовок Надписи можно включить и настроить отображение надписей на пьезометрическом графике. В строке вариант выбирается тип надписи:

- нет надписей;
- простые бирки;
- бирки с тенью.

В строке цвет фона и цвет рамки выбирается цвет фона и рамки надписи. В окне наклон выбирается ориентация надписи относительно точки на графике, т.е. указывается на сколько градусов необходимо повернуть надпись. Значение вводится либо с клавиатуры либо задается с помощью левой кнопки мыши путем перемещения красной точки на шкале. Опция Округлять значения позволяет округлять выводимые значения до указанных знаков после запятой.

Рисунок 17.24. Настройка подписей кривой

На рисунке, приведенном ниже можно увидеть результат включения режима отображения надписей на графике. На график были вынесены значения напора в подающем трубопроводе в узловых точках сети.

Рисунок 17.25. Пример графика с надписями

Установив курсор на подзаголовок Шрифт можно настроить параметры шрифта выводимых на график надписей.

рафик - Пьезометрическ 🔺	Шрифт - Надписи - Напор в	подающем трубопроводе	
Фон и сетка Ось Х Ось У Фивые Агранов обратном трубс Фалор в обратном трубс Фалор в обратном трубс Фалор в обратном трубс Фонов в обратном трубс	Шрифт: Arial Arial Black Arial Black Arial Unicode MS BankGothic Lt BT BankGothic Lt BT BankGothic Lt BT BankGothic M BT Атрибуты подчеркнутый зачеркнутый цвет	Начертание: Полужирный Обычный Полужирный Курсив Иабор: Кириллический ✓ Образец АаВbСс АаБбЯя	Размер 8 9 10 11 12 14 ×

Рисунок 17.26. Настройка шрифта надписей

17.8.3. Раздел таблица

При установке курсора на заголовок Таблица можно настроить отображаемые значения в табличной части пьезометрического графика. При желании скрыть какое-либо значение необходимо убрать галочку слева от наименования требуемого значения.

	График - Новый *	×
 Высота зданий Потери на шайбе на под Потери на шайбе на обр Потери на шайбе на обр Пиния вскипания Линия статического на Таблица Е Геодезическая высота, Е Напор в обратном трубе Е Расход в обратном трубе Е Потери напора в обратном Е Потери напора в обратном Е Скорость движения вод Е Скорость движения вод Е Удельные линейные пот Е Удельные линейные пот Е Расход в обратном труб 	График - Новый * Таблица Показывать: Кривые © Строки таблицы Показывать: Кривые © Строки таблицы Показывать: Кривые © Строки таблицы Название П = Наименование узла Г = Седезическая высота, м F = Седезическая высота, м F = Скорость движения воды в под.тр.де, м/с F = Скорость движения воды в об.тр.де, м/с F = Скорость во с во.тр.де, м/с F = Скорость	Х Удалить Свойства Наверх Вниз
< >>	ОК Отмена	Применить

Рисунок 17.27. Настройка табличных данных графика

При установке курсора на подзаголовок с наименованием кривой, например Наименование узла, можно отредактировать вид (видимая или невидимая) и название значений в табличной части графика.

	График - Новый *
 • Высота зданий • Потери на шайбе на под • Потери на шайбе на обр • Линия вскипания • Линия статического наг • Таблица • Е Наименование узла • Е Геодезическая высота, • Е Напор в обратном трубс	Наименование узла Название: Наименование узла Вид: Вид: Видимая
 ⇒ Распола емяви напур, ⇒ Длиаметр участка, м ⇒ Потери напора в подаю ⇒ Потери напора в подаю ⇒ Потери напора в обратн ⇒ Скорость движения вод ⇒ Скорость движения вод ⇒ Удельные линейные пот ⇒ Расход в подающем тру ⇒ Расход в обратном труб 	Привязка: шкала по Х:
	ОК Отмена Применить

Рисунок 17.28. Настройка Таблицы. Вкладка «Общие»

При установке курсора на подзаголовок Объекты можно выбрать объекты сети, для которых будут отображаться значения полей баз данных в шкальной части графика.

	График	- Новый *		×
🗄 🔨 Высота зданий 🧥	Объекты - На	именование узл	па	
 Потери на шайбе на обр Оптери на шайбе на обр 	Объект:	е символьные)		Добавить
на статического наг				Удалить
Таблица — — — Наименование узла				Изменить
<mark>Объекты</mark> Стиль Шрифт Егодезическая высота.	на графике:	формулы для: F Поле ¬	точек кривой	¥
 Напор в обратном трубс Располагаемый напор, Алина участка, м 	у простой отсчет	Y= Field("Name	9")	`
 ▲ Диаметр участка, м ▲ 중 Потери напора в подаю ▲ 중 Потери напора в обратн ▲ 중 Потери напора в обратн ▲ 중 Скорость движения вод 	Ŭ Y₁ Y₂	Y ₂ =		^ ~
 ⊕ = Скорость движения вод ⊕ = Удельные линейные по ⊕ = Удельные линейные по ∨ 	двойной отсчет фильтр для дан	ных: нет		¥
		01	К Отмен	а Применить

Рисунок 17.29. Настройка Таблицы. Вкладка «Объекты».

Установив курсор на подзаголовок Стиль можно настроить ориентацию значений в ячейках, количество знаков после запятой для значений, выводимых в таблицу значений. А также задать цвет фона для строки, содержащей определенные значения.

 Фысота зданий Потери на шайбе на под Линия вскипания Линия вскипания Линия статического нат Таблица Наименование узла Объекты Бранка участка, м Длина участка, м Длина участка, м Длина участка, м Потери напора в подано Потери напора в подано Потери напора в подано Скорость движения вод

Рисунок 17.30. Настройка Таблицы. Вкладка «Стиль»

На рисунке, приведенном ниже можно увидеть результат настройки стиля ячеек для всех значений и цвета фона для строки Располагаемый напор.

Рисунок 17.31. Пример настройки табличных данных

Установив курсор на подзаголовок Шрифт можно настроить параметры шрифта выводимых в таблицу значений. Данные параметры можно изменять для всех значений таблицы.

Рисунок 17.32. Настройка таблицы. Вкладка Шрифт

После редактирования шаблона пьезометрического графика нажать ОК для выхода из редактора шаблона и нажать 📝 для сохранения изменений.

17.9. Настройка HASP

При использовании **сетевого** ключа защиты HASP для пьезометрического графика необходимо указать опцию **Производить опрос сетевого ключа**.

Для того чтобы включить данную опцию следует:

- 1. Открыть окно пьезометрического графика, нажав кнопку Пьезометрический график
- 2. В окне График выберите пункт меню Файл|Настройки...;

Гра	График		
<u>Φ</u> a	йл 🔻 🛃 🕶 🗘	100%	
2	<u>О</u> ткрыть		
	<u>С</u> охранить		
	Сохранить <u>к</u> ак		
	Экспорт		
	<u>В</u> арианты		
	Кон <u>ф</u> игурации		
	Настройки		

Рисунок 17.33. Настройки графика

3. В появившемся окне можно установить/снять опцию Производить опрос сетевого ключа.

			Настро	йки			×
Hasp							
🗸 Пр	оизводить	опрос сет	евого ключ	на			
		[ОК		Отмена	Приме	нить

Рисунок 17.34. Настройка HASP пьезометрического графика

4. Нажмите кнопку ОК чтобы сохранить изменения и закрыть окно.

Глава 18. Возможные ошибки расчетов

После запуска расчета система может выдать ряд ошибок, ошибки бывают нескольких типов:

- ошибки по топологии сети;
- ошибки по семантической информации;
- ошибки по результатам расчета;
- остальные ошибки.

При этом, пока не будут устранены ошибки первых двух типов, расчет не запустится. Для того чтобы определить по какому объекту выдана ошибка, выполните двойной щелчок левой кнопкой мыши по строке с ошибкой, после чего объект, по которому выдана ошибка, замигает. Если ошибка связана с семантикой, то откроется окно семантической информации и курсор встанет на строку, в которой необходимо внести или исправить информацию.

Далее, для исправления ошибки, необходимо (в зависимости от ее типа) либо исправить графическую информацию (отредактировать сеть), либо семантическую (внести или исправить данные в базе).

18.1. Ошибки по топологии сети

1. Ошибка Z001: ID=XX Участок не имеет узла

----- Наладка тепловой сети от источника: ID=1 Предупреждение Z601: ID=5 Участок не имеет увла Предупреждение Z601: ID=7 Участок не имеет увла

Рисунок 18.1. Ошибка Участок не имеет узла

Данная ошибка скорей является не ошибкой, а предупреждением, поэтому она выводится синим цветом и не является причиной остановки расчета.

Такое предупреждение будет выведено при неправильном нанесении сети, когда начальный или конечный узел участка не связан с каким-либо объектом, хотя при этом визуально может казаться, что участок связан с точечным объектом.

Для проверки связности всей сети воспользуйтесь разделом <u>Раздел 6.3, «Контроль ошибок при вводе»</u>. Для исправления ошибки воспользуйтесь разделом <u>Раздел 6.2.5</u>, «Перепривязка участка».

XX- индивидуальный номер объекта (ID или Sys), автоматически присваиваемый при прорисовке сети;

2. Ошибка Z021: ID=XX В данный узел один участок должен входить, другой-выходить ------ Наладка тепловой сети от источника: ID=2188 ------Ощибка ZO21: ID=3965 В данный узел один участок должен входить, другой - выходить

Рисунок 18.2. Ошибка Z021

Данная ошибка выводится при неправильном нанесении сети, в том случае, когда к объекту присоединено недопустимое количество участков.

Например, потребитель – это узловой элемент, который может быть связан только с одним участком. Задвижка, насосная станция, могут быть соединены только с двумя участками, один входящий, другой выходящий из объекта. Четырехтрубная тепловая сеть после ЦТП изображается с использованием вспомогательного участка. Подробнее о правильном изображении объектов тепловой сети <u>Глава 2, Элементы</u> <u>модели тепловой сети</u>

3. Ошибка Z011: ID=XX Потребитель отключен по обратному

Данная ошибка выводится, когда к потребителю подходит подающий трубопровод, но отсутствует обратный. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

4. Ошибка Z012: ID=XX Потребитель отключен по подающему

Данная ошибка выводится, когда к потребителю подходит обратный трубопровод, но отсутствует подающий. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

5. Ошибка Z018: ID=XX Потребитель отключен

Данная ошибка выводится, когда теплоноситель не попадает к потребителю ни по подающему, ни по обратному трубопроводу. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков;

6. Ошибка Z019: ID=XX Узел отключен

Данная ошибка выводится, когда к узлу сети теплоноситель не попадает ни по подающему, ни по обратному трубопроводу. Для исправления данной ошибки необходимо проверить правильность нанесения схемы сети и проверить правильность установки режимов работы участков.

18.2. Ошибки по семантической информации

Ошибка Z004: Неверное значение поля.

Чтение данных по участкам... Ошибка ZD004: ID=3964 Неверное значение поля 'Dpod'-'Внутренний диаметр подающего трубопровода, м'

Рисунок 18.3. Ошибка неверное значение поля

На <u>Рисунок 18.3, «Ошибка неверное значение поля»</u> выведена ошибка, связанная с неверным значением поля *Диаметр* подающего трубопровода, м., где XX – индивидуальный номер объекта (ID или Sys), автоматически присваиваемый объекту при прорисовке сети.

Данная ошибка выводится при наличии некорректных данных или при отсутствии исходной информации хотя бы в одной строке необходимой для расчетов. Для устранения ошибки необходимо дважды щелкнуть левой кнопкой мыши по сообщению, после чего откроется окно семантической информации по объекту с неверными или отсутствующими данными, и курсор встанет на поле, где необходимо ввести или исправить информацию.

	Участок	_ 🗆 🔺 X
	🔡 И 4 🕨 И 🕼 🖬 📣 • 🕒 🖄 I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Текущая запись Запрос База Ответ	Þ
	Номер источника	1
	Наименование начала участка	TK-3
	Наименование конца участка	TK-8
	Длина участка, м	
	Внутренний диаметр подающего трубопровода, м	0.125
	Внутренний диаметр обратного трубопровода, м	0.125
4	Сумма коэф. местных сопротивлений под. тр-да	1.6
Caeferrance	Местные сопротивления под.тр-да	
Сообщения	Сумма коэф. местных сопротивлений обр. тр-да	1.6
Чтение данных по потребителям	Местные сопротивления обо тр-да	•
Чтение данных по участкам		
Ошибка ZDOO3: ID=98 Неверное значен	ие поля 'L'-'Длина участка, м'	

Рисунок 18.4. Исправление ошибки с неверным значением поля

18.3. Ошибки по результатам расчета

1. Предупреждение Недостаточно напора на источнике Delta=X м. Где Delta необходимый напор.

САМЫЙ НЕБЛАГОПОЛУЧНЫЙ ПОТРЕБИТЕЛЬ: ID=XX.

Контроль напора... Недостаточно напора DeltaH=105.873812 САМЫЙ ПЛОХОЙ ПОТРЕБИТЕЛЬ: ID=53

Рисунок 18.5. Сообщение о самом плохом потребителе

Данное сообщение выводится при нехватке располагаемого напора на потребителе, где *DeltaH* – значение напора которого не хватает, м, а *ID* (*XX*) – индивидуальный номер потребителя для которого нехватка напора максимальна.

Рисунок 18.6. Сообщение о недостаточном напоре

Дважды щелкните левой кнопкой мыши по сообщению о самом плохом потребителе: соответствующий потребитель замигает на экране.

Данная ошибка может вызвана несколькими причинами:

- а. Некорректными данными. Если величина нехватки напора выходит за рамки реальных значений для данной сети, то имеет место ошибка при вводе исходных данных или ошибка при нанесении схемы сети на карту. Следует проверить правильно ли были занесены следующие данные:
 - По источнику тепловой сети:
 - Располагаемый напор- проверить значение величины расчетного располагаемого напора на источнике.
 - Параметры трубопроводов:
 - Диаметры трубопроводов- проверить правильность занесения диаметров трубопроводов, например, был введен диаметр 0.05 м вместо 0.5 метра;
 - Зарастание трубопроводов- проверить значение зарастания трубопроводов, данная величина сильно влияет на гидравлический режим сети, так как уменьшает диаметр трубопровода. Например, если диаметр 0.032 м, а зарастание задано 5 мм, то фактический диаметр трубопровода будет 32- (5+5) = 22 мм. Если зарастание неизвестно, то данное значение задается равным 0;
 - Сопротивление трубопроводов- при наличии сопротивления участков трубопроводов, которые получают в результате замеров, программа не учитывает значения диаметров, шероховатостей, зарастания и местные сопротивления трубопроводов. Задавать сопротивления следует только при наличии результатов произведенных замеров.

Данные ошибки можно обнаружить с помощью построения пьезометрических графиков, например:

Рисунок 18.7. Обнаружение ошибки с помощью пьезометрического графика

На данном графике видно, что на одном из участков сети имеет место большое падение напора, очень высокие удельные линейные потери в трубопроводе. Причину можно обнаружить, если взглянуть на диаметры трубопроводов – после диаметра 125 мм установлен трубопровод диаметром 50 мм, а после него 100мм – нарушение телескопичности налицо;

- По потребителям тепловой сети:
 - Расчетные нагрузки на потребителях проверить правильно ли были заданы расчетные нагрузки на потребителе. При введенной ошибочно большой нагрузки на потребителе соответственно ей возрастает расход теплоносителя протекающего по трубопроводам сети, как следствие возрастают потери напора;
 - Расчетная схема присоединения проверить соответствует ли заданная схема подключения действительности, то есть например если температура теплоносителя в подающем трубопроводе 110°С и расчетная температура воды на отопление 95°С, то схема подключения должна соответствовать данной температуре, то есть это должна быть схема со смешением (элеваторным или насосным), но ни в коем случае с прямым присоединением. В схемах со смешением часть расчетного расхода отбирается из подающей линии и часть из обратной линии, а в схемах с прямым присоединением весь расчетный расход доставляется по подающему трубопроводу, поэтому при неправильном задании схемы подключения (вместо смешения прямое присоединение) весь расчетный расход протекающий по подающему трубопроводу повлечет за собой большие потери напора;

 Расчетный располагаемый напор в СО – проверить заданную величину потерь напора в системе отопления, например при элеваторном присоединении СО минимально необходимый напор перед элеватором для преодоления гидравлического сопротивления элеватора и присоединенной к нему системы отопления (без учета гидравлического сопротивления трубопроводов, оборудования, приборов и арматуры до места присоединения элеватора) определяется по формуле:

$$\Delta H_{\text{эл.мин}} = 1.4 * \Delta H_{CO} * (1+U)^2$$

где U- расчетный коэффициент смешения. При температурном графике 150°С-70°С. Коэффициент смешения (U) = 2.2 и введенном значении потерь напора в CO 1 м, минимальный напор перед элеватором будет составлять около 15 метров. При потерях напора в CO 3 м, минимальный напор уже 44 метра!

b. Гидравлическим режимом сети.

Если ошибки при вводе исходных данных отсутствуют, но нехватка напора существует и имеет реальное для данной сети значение, то в этой ситуации определение причины нехватки и способ ее устранения осуществляет сам специалист, работающий с данной тепловой сетью.

2. ID=XX 'Наименование потребителя' Опорожнение системы отопления (Н, м)

Данное сообщение выводится при недостаточном напоре в обратном трубопроводе для предотвращения опорожнения системы отопления верхних этажей здания, полный напор в обратном трубопроводе должен быть не менее суммы геодезической отметки, высоты здания плюс 5 метров на заполнение системы. Запас напора на заполнение системы может быть изменён в настройках расчета (<u>Раздел 9.2, «На-</u> стройка расчета потерь напора»).

XX – индивидуальный номер потребителя, у которого происходит опорожнение системы отопления, *H*- напор, в метрах которого недостаточно;

3. ID=XX 'Наименование потребителя' Напор в обратном трубопроводе выше геодезической отметки на H, м

Данное сообщение выдается при давлении в обратном трубопроводе выше допустимого по условиям прочности чугунных радиаторов (более 60 м. вод. ст.), где *XX*- индивидуальный номер потребителя и *H*- превышающее геодезическую отметку значение напора в обратном трубопроводе.

Максимальный напор в обратном трубопроводе можно задать самостоятельно в *на-стройках расчетов*.;

4. ID=XX 'Наименование потребителя' Не подобрать сопло элеватора. Ставим максимальный

Данное сообщение может появиться при наличии больших нагрузок на отопление или при неверном выборе схемы подключения, которая не соответствует расчетным параметрам. *XX*- индивидуальный номер потребителя, для которого не подобрать сопло элеватора;

5. ID=XX 'Наименование потребителя' Не подобрать сопло элеватора. Ставим минимальный

Данное сообщение может появиться при наличии очень малых нагрузок на отопление или при неверном выборе схемы подключения, которая не соответствует расчетным параметрам. *XX* – индивидуальный номер потребителя, для которого не подобрать сопло элеватора.

6. Предупреждение Z618: ID=XX 'XX' Количество шайб на подающем трубопроводе на CO больше 3 (YY)

Данное сообщение означает что в результате расчета количество шайб, необходимое для регулировки системы более 3 штук.

Так как минимальный диаметр шайбы по-умолчанию составляет 3 мм (указывается в настройках расчёта <u>Раздел 9.2, «Настройка расчета потерь напора»</u>), а расход на систему отопления потребителя ID=XX очень маленький, то в результате расчета определяется общее количество шайб и диаметр последней шайбы (в базе данных потребителя).

То есть сообщение вида: Количество шайб на подающем трубопроводе на СО больше 3 (17) предупреждает, что для наладки данного потребителя следует установить 16 шайб диаметром 3 мм и 1 шайбу, диаметр которой определяется в базе данных потребителя.

7. Предупреждение Z642: ID=XX Элеватор на ЦТП не работает

Данное сообщение выводится в результате поверочного расчета и означает, что элеваторный узел не функционирует.

18.4. Остальные ошибки

1. Ошибка Z044: Не выбран ни один источник для расчета.

Анализ топологии... Ошибка ZO44: Не выбран ни один источник для расчета Расчет окончен!

Рисунок 18.8. Ошибка, не выбран источник для расчета

Данная ошибка появляется, если в панели гидравлических расчетов ZuluThermo не был отмечен ни один источник. Чтобы отметить источник рассчитываемой сети нужно левой клавишей мыши установить галочку в окне напротив наименования источника. Если в слое несколько источников тепла, не связанных между собой, то можно выделить только нужные:

Пример тепловой сети
 Северная
 ТЭЦ

Рисунок 18.9. Выбор источника для расчета

Глава 19. Автоматическое занесение исходных данных

19.1. Автоматическое занесение длины с карты

При нанесении тепловой сети на карту в масштабе, поле Длина участка можно заполнить автоматически для всех участков тепловой сети. Длины участков можно определять как с учетом, так и без учета геодезических отметок начального и конечного узла. При запуске операции автоматического определения длин участков пользователю будет предложено стоит ли учитывать геодезические отметки и следует ли перезаписывать текущие значения длины.

Для занесения длины с карты:

 Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку нели инструментов. На экране появится окно теплогидравлических расчетов (см. <u>Рисунок 19.1, «Окно теплогидравлических расчетов ZuluThermo»</u>).

ZuluThermo					^ >
					Слой
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование
С учетом утечек С учетом тепловы По норм. потер По изоляции Сопла и шайбы из Диаметры из конструкторского расчета	х потерь рям наладки				
	Раскраска	<нет>			Ý
Расчет Нас	тройки Справка	Закрыты			

Рисунок 19.1. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажмите кнопку Слой... и выберите из списка слой тепловой сети.
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на <u>Рисунок 19.2, «Вклад-ка Сервис»</u>.

Автоматическое занесение исходных данных

сити плеттно Пример тепловой сети	^ / Слой
Наладка Поверка Температурн	ый график Конструкторский Надежность Сервис Оборудование
Длины участков с карты	Создать новую сеть
Отметки высот с карты	Обновить структуры таблиц
Начала и концы участков	Добавить поля по надежности
Калькулятор	Единицы измерения
	Расчет тепловых потерь
Расчет Настройки	Справка Закрыты

Рисунок 19.2. Вкладка Сервис

4. Нажмите кнопку Длины участков с карты. Откроется окно с дополнительными опциями определения длины <u>Рисунок 19.3</u>, «Окно опций определения <u>длины</u>».

Длины участков с карты	×
 Учитывать геодезические отметки узлов Перезаписывать текущие данные 	
ОК Отмена	

Рисунок 19.3. Окно опций определения длины

- 5. В открывшемся окне выберите, следует ли учитывать геодезические отметки объектов тепловой сети.
- 6. Для перезаписи значений длины у всех участков установите опцию Перезаписывать текущие значения. В случае, если эта опция не установлена- длина будет считана только для тех участков, протяженность которых не задана.
- 7. Нажмите кнопку ОК. Программа считает длины участков с нанесенной на карту расчетной схемы в соответствии с масштабом и запишет данные в базу данных по участкам в поле Длина участка.

19.2. Автоматическое занесение начала и конца участков

Если заданы наименования узловых объектов сети (камер, потребителей, насосных станций и др.), то для участков тепловой сети можно автоматически заполнить поля Наименование начала участка и Наименование конца участка. Имя начального узла

будет наименованием начала участка, а имя конечного узла – наименование конца участка.

Для проведения данной операции:

1. Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку нели инструментов. На экране появится окно теплогидравлических расчетов (<u>Рису-</u>нок 19.4, «Окно теплогидравлических расчетов ZuluThermo»).

ZuluThermo					_ • ×
					Слой
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование
 С учетом утечек С учетом тепловы По норм. поте По изоляции Сопла и шайбы из Диаметры из конструкторского расчета 	іх потерь рям з наладки р				
	Раскраска	<нет>			Y
Расчет Нас	стройки Справка	Закрыты			

Рисунок 19.4. Окно теплогидравлических расчетов ZuluThermo

- 2. Выберите слой тепловой сети из списка, нажав кнопку Слой....
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на <u>Рисунок 19.5, «Вклад-ка «Сервис»»</u>.

ZuluThermo	_ • ×
Пример тепловой сети	Слой
Наладка Поверка Температурн	ный график Конструкторский Надежность Сервис Оборудование
Длины участков с карты	Создать новую сеть
Отметки высот с карты	Обновить структуры таблиц
Начала и концы участков	Добавить поля по надежности
Калькулятор	Единицы измерения
	Расчет тепловых потерь
Расчет Настройки	Справка Закрыть

Рисунок 19.5. Вкладка «Сервис»

4. Нажмите кнопку Начала и концы участков. Программа автоматически заполнит поля Наименование начала участка и Наименование конца участка для всех участков.

Важно

При повторном использовании данной операции, происходит перезапись полей Наименование начала участка и Наименование конца участка.

19.3. Автоматическое занесение геодезических отметок объектов сети со слоя рельефа

При наличии слоя рельефа, геодезические отметки всех объектов тепловой сети можно автоматически считать с карты. Для этого:

1. Выберите команду главного меню Задачи|ZuluThermo или нажмите кнопку нели инструментов. На экране появится окно теплогидравлических расчетов (<u>Рису-</u>нок 19.6, «Окно теплогидравлических расчетов ZuluThermo»).

ZuluThermo					_ _ × × Слой
Наладка Поверка Температу	урный график	Конструкторский	Надежность	Сервис	Оборудование
С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета					
	Раскраска -	<нет>			
Расчет Настройки	Справка	Закрыты			

Рисунок 19.6. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажмите кнопку Слой... и выберите слой тепловой сети.
- 3. Перейдите на вкладку Сервис. Появится окно, показанное на <u>Рисунок 19.7, «Вклад-ка «Сервис»»</u>.

Автоматическое занесение исходных данных

Наладка Поверка Температ	оный график Конструкторский Наде	жность Сервис Оборудования
Длины участков с карты	Создать новую сеть	
Отметки высот с карты	Обновить структуры таблиц	
Начала и концы участков	Добавить поля по надежности	
Калькулятор	Единицы измерения	
	Расчет тепловых потерь	

Рисунок 19.7. Вкладка «Сервис»

- 4. Нажмите кнопку Отметки высот с карты. Откроется окно Перезаписать текущие значения.
- 5. Для перезаписи значений отметки у всех объектов нажмите кнопку Да. В случае нажатия кнопки Нет- значения будут записаны только для тех объектов, геодезические отметки которых не указаны.
- 6. Нажмите кнопку ОК. В результате автоматически заполнится поле геодезическая отметка для всех объектов сети.

Глава 20. Справочники

20.1. Справочник по трубам

В последующих подразделах описываются операции по работе со справочником:

- Открытие справочника по трубам (<u>Раздел 20.1.1</u>, «<u>Открытие справочника по трубам</u>»);
- Выбор материала трубопровода (<u>Раздел 20.1.2, «Выбор материала трубопровода»</u>);
- Добавление диаметра к существующему материалу (<u>Раздел 20.1.3, «Добавление нового диаметра к существующему материалу</u>»);
- Удаление диаметра (<u>Раздел 20.1.4, «Удаление диаметра»</u>);
- Добавление нового материала в справочник (<u>Раздел 20.1.5, «Добавление нового материала в справочник»</u>);
- Удаление материала из справочника (<u>Раздел 20.1.6, «Удаление материала из справочника</u>).

Для выполнения конструкторского расчета пользователь может самостоятельно создавать различные наборы диаметров (сортаменты), по которым программа будет выбирать нужный диаметр для каждого участка. Для добавления и редактирования сортаментов используется *Справочник по трубам*.

По умолчанию для каждой сети всегда существует сортамент под именем Сталь, он является основным. Если при подборе диаметров необходимо для разных участков использовать разные сортаменты, то имя нужного сортамента можно задать для каждого участка персонально поле *Tubes*, *Сортамент* в базе данных по участкам (см.<u>Рисунок 20.1, «Выбор материала трубопровода»</u>). Если это поле для участка пусто, то расчет для подбора диаметров для данного участка будет использовать основной сортамент.

Участок		_ 🗆 🔺 X
🔠 M 🔸 🕨 M 🔯 🐼 🛶 🖓 🔛 🖆 🎽 🔡	🧉 🞽 🔮	
Текущая запись Запрос База Ответ) E
Тепловые потери в подающем трубопроводе, ккал/ч		
Тепловые потери в обратном трубопроводе, ккал/ч		
Среднегод.уд.тепл.потери под.тр-да, ккал/ч*м		
Среднегод.уд.тепл.потери обр.тр-да, ккал/ч*м		
Норм.эксп.тепл.потери под.тр-да, ккал/час*м2*С		
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С		
Температура в начале участка под.тр-да,°С		
Температура в конце участка под.тр-да,*С		
Температура в начале участка обр.тр-да, °С		
Температура в конце участка обр.тр-да,*С		
Диаметр подающего тр-да (конструкторский), м		
Диаметр обратного тр-да (конструкторский), м		
Шероховатость под. тр-да (конструкторский), мм		
Шероховатость обр. тр-да (конструкторский), мм		_
Оптимальная скорость в подающем (конструкторский), м/с		
Оптимальная скорость в обратном (конструкторский), м/с		
Удельные линейные потери подающего (конструкторский), мм/м		E
Удельные линейные потери обратного (конструкторский), мм/м		
Сортамент	Чугун	
		3-

Рисунок 20.1. Выбор материала трубопровода

20.1.1. Открытие справочника по трубам

Открыть справочник можно двумя способами.

Первый способ:

- 1. Выбрать команду главного меню Задачи | Zulu Thermo или нажать кнопку 🔁 на панели инструментов;
- 2. Перейти на вкладку Конструкторский;
- 3. Нажать кнопку Слой... и выбрать слой тепловой сети из списка;
- 4. На панели ZuluThermo нажать кнопку (см.<u>Рисунок 20.2, «Открытие справочника</u> по трубам»).

ZuluThermo					_ • ×
Пример тепловой сети					Слой
Наладка Поверка Те	мпературный график	Конструкторский	Надежность	Сервис	Оборудование
Участок подключения Сталь •	.1 О По расхода О По тепловы t в подающ 20 t в обратни	ім ым нагрузкам ем тр-де, С 150 эм тр-де, С 70			
 По скоростям По удельным линейн 	t горяч ым потерям — t холодн м — 0.032	ей воды, С 60 ой воды, С 5			
минимальный диаметр.	, M 0.052				
Расчет Настро	ойки Справка	Закрыты			

Рисунок 20.2. Открытие справочника по трубам

Откроется окно справочника по трубам (Сортамент), в котором указаны диаметры трубопроводов в зависимости от их материала. (см.<u>Рисунок 20.3, «Окно «Сорта-мент»»</u>)

Сталь		*	Новый набор
Внутренний д	иаметр, мм	^	Удалить набор
50			
70			Изменить имя
80			
100			Удалить
125			
150			Добавить
1/5			_
200			Вставить
250			
300			
350			
400			
500			
500			
700			
800			
1000			
1000			
1200		~ ~	

Рисунок 20.3. Окно «Сортамент»

Второй способ:

- 1. Открыть окно семантической информации по конкретному участку (3);
- 2. Установить курсор с правой стороны от строки Сортамент (см. <u>Рисунок 20.4, «От-крытие справочника по трубам»</u>).

Участок	×
🔡 И Ч 🕨 И 🔁 🗗 🖇 - 🕒 🖄 🖆 🕌 🖉	e
Текущая запись Запрос База Ответ	►
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С	^
Температура в начале участка под.тр-да, °С	
Температура в конце участка под.тр-да, °С	
Температура в начале участка обр.тр-да, °С	
Температура в конце участка обр.тр-да, °С	
Конструкторский диаметр подающего тр-да, м	
Конструкторский диаметр подающего тр-да, м	
Шероховатость подающего трубопровода (конст	
Шероховатость обратного трубопровода (констр	
Оптимальная скорость в подающем (конструкт	
Оптимальная скорость в обратном (конструкто	
Удельные линейные потери подающего (констр	
Удельные линейные потери обратного (констру	
Сортамент	<u>~</u>

Рисунок 20.4. Открытие справочника по трубам

3. Нажать кнопку Откроется окно справочника по трубам (Сортамент).

20.1.2. Выбор материала трубопровода

Для того чтобы выбрать материал из справочника по трубам надо:

- 1. Открыть окно семантической информации по участку, на котором надо выбрать материал (³);
- 2. Установить курсор с правой стороны от строки Сортамент.

Участок _ 🗆	▲ ×
📰 k 🔹 🕨 🛛 🗣 🗣 🗣 🖓 📲 🕌	£
Текущая запись Запрос База Ответ	►
Норм.эксп.тепл.потери обр.тр-да, ккал/час*м2*С	~
Температура в начале участка под.тр-да, °С	
Температура в конце участка под.тр-да,*С	
Температура в начале участка обр.тр-да, °С	
Температура в конце участка обр.тр-да,*С	
Конструкторский диаметр подающего тр-да, м	
Конструкторский диаметр подающего тр-да, м	
Шероховатость подающего трубопровода (конст	
Шероховатость обратного трубопровода (констр	
Оптимальная скорость в подающем (конструкт	
Оптимальная скорость в обратном (конструкто	
Удельные линейные потери подающего (констр	
Удельные линейные потери обратного (констру	
Сортамент	×78

Рисунок 20.5. Окно семантической информации по участку

- 3. Нажать кнопку ...;
- 4. В появившемся окне Сортамент выбрать необходимый материал, или добавить новый;
- 5. Нажать кнопку Сохранить.

20.1.3. Добавление нового диаметра к существующему материалу

Если в справочник по диаметрам к существующему материалу нужно добавить новый диаметр, то в этом случае следует:

- 1. Открыть справочник по трубам;
- 2. Выбрать материал в списке. При необходимости добавить новый;
- 3. Нажать кнопку Добавить для добавления строки в конец списка. Для добавления в определенном месте списка следует встать на определенную строку и нажать кнопку Вставить. Перед выделенной строкой добавится новая строка;
- 4. Ввести внутренний диаметр;
- 5. После ввода всех диаметров нажать кнопку Сохранить (см. <u>Рисунок 20.6, «Добавление диаметра к существующему набору»</u>).

Сталь	~	Новый набор
Внутренний диаметр, мм	^	Удалить набор
50		
70		Изменить имя
80		
100		Удалить
125		
150		Добавить
175		
200		Вставить
225		
250 N		
300 1/5		
350		
400		
500		
600		
700		
800		
900		
1000		
1200	•	

Рисунок 20.6. Добавление диаметра к существующему набору

6. После сохранения изменений нажать кнопку ОК.
20.1.4. Удаление диаметра

Чтобы удалить диаметр из справочника надо:

- 1. Выделить левой кнопкой мыши строку, которую необходимо удалить;
- 2. Нажать кнопку Удалить;
- 3. Нажать кнопку Сохранить. После сохранения изменений нажать кнопку ОК.

20.1.5. Добавление нового материала в справочник

В справочник по диаметрам трубопроводов можно добавлять новые материалы. Указание материала необходимо для того, чтобы при проведении конструкторского расчета программа «знала» какой набор диаметров существует для каждого материала.

Для того, чтобы добавить новый материал в справочник, следует:

- 1. Нажать кнопку Новый набор. Откроется диалог задания названия набора;
- 2. Ввести название материала (например, Чугун), и нажать кнопку ОК;
- 3. Занести необходимые диаметры, нажимая кнопку Добавить;
- 4. Нажать на кнопку Сохранить после ввода всех необходимых значений;
- 5. Для выхода из окна Сортамент нажать кнопку ОК.

20.1.6. Удаление материала из справочника

Для того чтобы удалить материал из справочника надо:

- 1. Выбрать материал в справочнике;
- 2. Нажать кнопку Удалить набор;
- 3. Нажать кнопку Сохранить.

Для выхода из окна Сортамент нажать на кнопку ОК.

20.2. Справочник по насосам

- Открытие справочника по насосам; (<u>Раздел 20.2.1</u>, «<u>Открытие справочника по насосам</u>»)
- Выбор марки насоса из справочника; (<u>Раздел 20.2.2</u>, «Выбор марки насоса из справочника»)
- Добавление марки в справочник; (<u>Раздел 20.2.3, «Добавление марки в справочник»</u>)
- Импорт данных по насосам; (<u>Раздел 20.2.4, «Импорт данных по насосам»</u>)

- Экспорт данных по насосам; (<u>Раздел 20.2.5, «Экспорт данных по насосам»</u>)
- Удаление насоса. (<u>Раздел 20.2.6, «Удаление насоса»</u>)

Для вычисления напора воды, создаваемого насосом, используется расход воды, проходящий через насос. В данном справочнике заносится характеристика насоса (зависимость расхода воды от напора), для дальнейшего использования в модели.

Важно

При задании насоса с помощью справочника величину напора, развиваемого насосом, задавать не нужно, так как значение напора программа самостоятельно будет брать из справочника.

Справочник по насосам можно открыть через базу данных по насосам в поле Марка

насоса на под. (обр.) тр-де, либо нажав кнопку 🕑 на панели инструментов.

После нажатия появляется окно Справочника насосов, в которой приведены характеристики в зависимости от расхода воды (м³/ч) и напора (м вод.ст.), создаваемого насосом, а также приведен график этой зависимости.

						Спра	вочник	нас	осо	в							
							Hacoc	ы									
	ID	Мар	ка насоса	Ча	стота вращения, о	о Диаметр ра	бочего ко.	Max	гемпе	рату	ра се	те Допусти	мое да	зление	Мах вы	сота во	асыва
	34	20Д-1	3	97]	855		30				4			9		
	36	C312	250-70	15	00	490		180				7,5			11		
	37	C325	500-60	15	00	470		180				12			11		
	38	C312	250-140 1	15	00	470		180				7,5			11		
	39	C312	250-45	15	00	415		180				7,5			4		
	40 C32500-180 1		C32500-180 1 3000 415			120			28			10					
	41	C350)0-70	30	00	250		180				10			16		
	42	C350)00-160	30	00	415		120				40			10		
	43	C350)00-70	15	00	550		120				15			6		
~	44	C380	0-100	15	00	415	ŀ	180				5.5			11		>
_	_		_					_									
_	<u>с.</u> ,			Xapa	ктеристика насос Гипп »	a hu		-	До	бавит	ъ	Удалит	•	Им	порт	Эн	копорт
-	0. 0	137.9	<u>102</u>	0	0	0				_							
-	400		107	0	31	0						110		-		\sim	-
-	800		109	0	51	0		-11		70		100					`
-	1400	1	108	1	70	0		-		60		90		/			
-	2000	1	100	2	76	0		-11		50	Ξ.	70					
-	2200	, 1	94	1	74	0		-11	8	40	£	60	- /	·			
¥.	2200							-11	Ę	40	d	50					
π.								- 1	×	30	Į.	40					
										20	-	30 /	<i>,</i>				
										10		20 /					
												10					
										0		0	500		000	1500	2000
	_		_									U	Pac	ход во	оды (G,	м3/ч)	2000
<				_				>									
														Вы	бор	0	тмена

Рисунок 20.7. Окно Справочника насосов

Помимо этого в таблице насосов отображены: частота вращения (об/мин) и диаметр рабочего колеса (мм), максимальная температура сетевой воды (град. Цельсия), допустимое давление на всасывании (кгс/см²), максимальная высота всасывания (м вод.ст.), КПД (%).

На графике красными точками обозначены границы рабочей зоны насосов, а зеленойрабочая точка. В таблице характеристик в колонке тип каждой точке соответствует значение 0, 1 или 2:

- 0-точки, лежащие вне рабочей зоны (на графике они изображены черным цветом);
- 1- точки, обозначающие границы рабочей зоны (на графике они красные);
- 2-рабочая точка насоса (на графике она зеленая).

Для просмотра характеристики по интересующей марке насоса необходимо, наведя курсор на эту марку, нажать левую кнопку мыши.

	ID	Марка насоса	Частота вращения, об	Диаметр рабочего ко.	Мах температура сете	Допустимое давление	Мах высота
•	34	20Д-6	970	855	80	4	9
	36	ເ ອີ1250-70	1500	490	180	7,5	11

Рисунок 20.8. Просмотр марки насоса

Сразу же в нижней части диалогового окна отобразятся характеристики соответствующие данному насосу, а также график зависимости расхода воды от напора. (см.<u>Рисунок 20.9, «Просмотр характеристики насоса»</u>).

Если в таблице характеристик в нижней левой части окна выделить интересующую строку, нажав на значение расхода, напора, типа и т.д. левой клавишей мыши, то выделенная точка будет показана на графике (обведена в черный кружок, см.<u>Рисунок 20.9,</u> «Просмотр характеристики насоса»).

400 800 1400 2000 2200	107 109 108 100	0 0 1 2 1	0 31 51 70 76 74	0 0 0 0 0	3	50 40 30 20 10	Hanop (H, M)	70 60 50 40 30 20	/	/		
*						10		10	/			

Рисунок 20.9. Просмотр характеристики насоса

20.2.1. Открытие справочника по насосам

Открыть справочник можно двумя способами.

Первый способ:

 Нажать кнопку на панели инструментов для просмотра или редактирования справочника.

Второй способ:

- 1. Открыть окно семантической информации по насосу (³);
- 2. Установить курсор с правой стороны от поля Марка насоса на подающем тр-де. В случае если насос установлен на обратном трубопроводе, использовать поле в строке Марка насоса на обратном (*Mark_obr*).

Насосная станция		_ 🗆 🔺 X
🔡 H 🔺 🕨 🔁 🔁 🐼 🕶 🔛 🖆	🖆 🞽 📓 🗳	¥ 🔮
Текущая запись Запрос База Ответ		
Наименование насосной станции		~
Номер источника		
Геодезическая отметка, м		
Способ задания насоса на подающем		
Способ задания насоса на обратном		
Марка насоса на подающем		N
Марка насоса на обратном		νž
Напор насоса на подающем трубопроводе, м		
Напор насоса на обр. трубопр-де, м		
Напор после насоса на подающем, м		
Напор перед насосом на обратном, м		
Напор на входе в насосную в под. трубопр-де, м		
Напор на входе в насосную в обр. трубопр-де, м		
Напор на выходе из насосной в под. трубопр-де, м		¥

Рисунок 20.10. Выбор марки насоса

3. Нажать кнопку Откроется окно справочника по насосам.

🕕 Важно

Кнопка будет видна только когда активна правая часть строки.

20.2.2. Выбор марки насоса из справочника

Для ввода конкретной марки насоса нужно:

- 1. Открыть окно семантической информации по конкретному насосу ();
- 2. Установить курсор с правой стороны от поля Марка насоса на подающем тр-де. В случае если насос установлен на обратном трубопроводе, использовать поле Марка насоса на обратном (*Mark obr*).

Насосная станция		_ 🗆 🔺 X
🔠 H 🔺 🕨 H 🔁 🖬 🖌 🖬 🖄	🖆 🞽 📓 🖆	¥ 🔮
Текущая запись Запрос База Ответ		►.
Наименование насосной станции		~
Номер источника		
Геодезическая отметка, м		
Способ задания насоса на подающем		
Способ задания насоса на обратном		
Марка насоса на подающем		N
Марка насоса на обратном		μž
Напор насоса на подающем трубопроводе, м		
Напор насоса на обр. трубопр-де, м		
Напор после насоса на подающем, м		
Напор перед насосом на обратном, м		
Напор на входе в насосную в под. трубопр-де, м		
Напор на входе в насосную в обр. трубопр-де, м		
Напор на выходе из насосной в под. трубопр-де, м		~
Lee		

Рисунок 20.11. Выбор марки насоса

3. Нажать кнопку ...;

- В открывшемся окне Справочника насосов с помощью левой кнопки мыши выделить необходимую марку (для поиска нужной марки можете воспользоваться полосой прокрутки);
- 5. Нажать кнопку Выбор. Марка насоса автоматически будет занесена в таблицу исходных данных, а вы вернетесь в таблицу исходных данных.

Примечание

Кнопка ... будет видна только, когда активна правая часть строки.

Важно

 \mathbf{T}

Если вы впишите марку в таблицу исходных данных с клавиатуры, не занеся предварительно эти данные в справочник насосов, то расчет выдаст ошибку в строке Марка насоса, в связи с тем, что в справочнике эта информация отсутствует.

20.2.3. Добавление марки в справочник

Если в справочнике насосов необходимая вам марка отсутствует, то нужно занести новую марку в справочник самостоятельно, для этого следует:

- 1. Нажать кнопку 🕑 на панели инструментов. Откроется справочник по насосам;
- 2. В появившемся окне, нажмите кнопку Добавить. В таблице насосы и характеристики насосов появится новая строка.

			Справ	зочник на	coco	в		
				Насосы				
ID	Марка насоса	Частота вращени	ня, об Диаметр рабо	очего ко. Мах	темпе	ратура се	те Допустимое давлен	ние Мах высота всасыва
233	300,090	1000	U	0			U	U
234	200,60	1000	U	U			U	U
235	зиодаца	1000	0	U			U	0
236	бНДв	1450	0	U			0	0
237	1Д800-56а	1450	0	0			0	0
238	1Д200-80	2900	0	0			0	0
239	ЦНС60-99	2950	0	0			0	0
240	1Д1600-90	980	0	0			0	0
245		0	0	0			0	0
c								3
G, M +	3/ч Н. м вод. (Тип КЛД 2	<u>w</u>		до % ти	10 9 8 7 (\$ 'H') doure 4 3 2 1 0	Вдалить 45 40 35 30 25 20 15 10 5 0 200 400 Расход	Зкепор Зкепор 600 800 1000 120 воды (G, м3/ч)
								Выбор Отмена

- 3. В верхнюю часть таблицы Насосы внести марку насоса, частоту вращения (об/мин), диаметр рабочего колеса (мм), максимальную температуру сетевой воды (С), допустимое давление на всасе (кгс/см²) и максимальную высоту всасывания (м. вод.ст.);
- 4. После занесения названия марки насоса, необходимо, также задать в таблице характеристик насоса:
 - Расход, G (м³/ч);
 - Напор, Н (м вод.ст.) воды;
 - Указать тип, вводимой точки (0,1 или 2);
 - КПД, %.
- 5. В таблице характеристик после ввода первой строки нажать * для добавления следующей.

		Характер	оистин	(a Hacoca	
	G, м3/ч	Н, м вод. ст.	Тип	КПД, %	W
*	100	50	0	58	
				5	

Рисунок 20.13. Добавление характеристики насоса

При вводе значений автоматически в правой части окна будет выстраиваться график зависимости расхода воды от напора.

20.2.4. Импорт данных по насосам

Импортировать, возможно, исходные данные, полученные в результате экспорта. Для этого надо:

- 1. Нажать кнопку 🕑 на панели инструментов для открытия справочника по насосам;
- 2. Нажать на кнопку Импорт в диалоговом окне Справочник насосов;
- 3. В раскрывшемся окне указать файл, из которого будет производиться импорт.

20.2.5. Экспорт данных по насосам

Для того чтобы экспортировать данные по насосам в текстовый файл, надо:

- 1. Нажать кнопку 🕑 на панели инструментов для открытия справочника по насосам;
- 2. Выделить строку с определенной маркой насоса;
- 3. Нажать кнопку Экспорт;
- 4. В появившемся диалоговом окне Сохранить как, выбрать директорию и ввести имя текстового файла, с которым он будет сохранен;
- 5. Нажать кнопку Сохранить.

20.2.6. Удаление насоса

Если появилась необходимость какой-то насос удалить, надо:

- 1. Нажать кнопку 🕑 на панели инструментов для открытия справочника по насосам;
- 2. Выделить строку с маркой насоса, который необходимо удалить;
- 3. Нажать кнопку Удалить и при заданном вопросе: «Вы действительно хотите удалить насос?», нажать- Да.

20.3. Справочник по запорной арматуре

- Открытие справочника по запорной арматуре; (<u>Раздел 20.3.1, «Открытие справочника по запорной арматуре</u>»)
- Выбор марки запорной арматуры из справочника; (<u>Раздел 20.3.2</u>, «Выбор марки запорной арматуры из справочника»)
- Добавление марки в справочник; (<u>Раздел 20.3.3, «Добавление марки в справочник»</u>)
- Импорт данных по запорным устройствам; (<u>Раздел 20.3.4</u>, «Импорт данных по запорным устройствам»)
- Экспорт данных по запорным устройствам; (<u>Раздел 20.3.5</u>, «Экспорт данных по запорным устройствам»)
- Удаление запорного устройства из справочника. (<u>Раздел 20.3.6, «Удаление запорно-</u> го устройства из справочника»)

Для вычисления сопротивления запорного устройства используется коэффициент гидравлического сопротивления (безразмерная величина) и условный диаметр. В данном справочнике для ряда запорных устройств, приводятся зависимости коэффициента гидравлического сопротивления от степени открытия запорного устройства (либо от угла закрытия поворотного устройства), для дальнейшего использования в модели.

Справочник по запорной арматуре можно открыть через базу данных по запорным устройствам в поле Марка либо нажав кнопку 🙆 на панели инструментов.

После нажатия появляется таблица справочника по запорной арматуре, в которой приведены значения коэффициентов местного сопротивления в зависимости от степени открытия (в %) или от угла поворота задвижки (в град.), а также приведен график этой зависимости. (см.<u>Рисунок 20.14, «Окно Справочника по запорной арматуре»</u>)

			Справочник по запорно	й армат	ype		
			Запорная арматур	a			
	ID	Марка арматуры		Тип			
	1	Простая без выемки для клапана		U			
	2	Лудло с выемкой для клапана		0			
	3	Клапан с двусторонним уплотнение	м	1			
	4	Клапан с двусторонним уплотнение	м и сферический клапан	1			
	5	Лудло с выемкой для клапана, кон	евая	0			
	6	Лудло с выемкой для клапана, кон	цевая dm/d=1.25	0			
	7	Лудло с выемкой для клапана, кон	цевая dm/d=1.5	0			
	8	Лудло с выемкой для клапана, с по	лным кольцом на клапане	0			
	9	Лудло с выемкой для клапана, конц	евая	0			
•	10	Вентиль d=38 мм		0			
	11	Вентиль d=200 мм		n	1		
 	Сте 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 1	пень открытия. 200 12 4.4 2,6 2 1.7 1.5 1.3 1.11		Добавить 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	Цдалить	Импорт	Экспорт

Рисунок 20.14. Окно Справочника по запорной арматуре

В столбец ID автоматически заноситься порядковый номер запорного устройства в справочнике.

В столбце Марка арматуры указывается название запорного устройства.

Столбец Тип обозначает:

- Если в поле тип- 0, то в таблице местных сопротивлений указывается степень открытия (в %);
- Если в поле тип- 1, то в таблице указывается угол поворота закрытия задвижки (в град.).

Для просмотра данных по интересующей марке арматуры необходимо, наведя курсор на эту марку, нажать левую клавишу мыши. (<u>Рисунок 20.15, «Просмотр марки запорного устройства»</u>).

	9	Лудло с выемкой для клапана, концевая	0
►	10	Вентиль d=38 мм	0
	11	увентиль d=200 мм	0

Рисунок 20.15. Просмотр марки запорного устройства

Сразу же в нижней части диалогового окна отобразятся местные сопротивления соответствующие данному запорному устройству, а также график зависимости коэффициента местного сопротивления от степени открытия или от угла поворота задвижки. (Рисунок 20.16, «Просмотр характеристики запорного устройства»).

Если в таблице местных сопротивлений выделить интересующую строку, нажав на любое значение степени открытия/угла поворота либо сопротивления левой клавишей

мыши, то выделенная точка будет показана на графике. (см. <u>Рисунок 20.16, «Просмотр</u> характеристики запорного устройства»).

Рисунок 20.16. Просмотр характеристики запорного устройства

20.3.1. Открытие справочника по запорной арматуре

Открыть справочник можно двумя способами.

Первый способ:

 Нажать кнопку () на панели инструментов для просмотра или редактирования справочника.

Второй способ:

- 1. Открыть окно семантической информации по конкретной задвижке ();

Задвижка	_ 🗆 🔺 X
📳 H 🔹 🕨 H 🔯 🖬 📣 📲 🗳 🖆 🕻	🛉 📓 📽 🖀 🔮
Текущая запись Запрос База Ответ	Þ
Наименование арматуры	A
Номер источника	
Наименование источника	
Геодезическая отметка, м	
Марка задвижки на подающем	
Условный диаметр на подающем, м	ξ.
Степень открытия на подающем	
Марка задвижки на обратном	
Условный диаметр на обратном, м	
Степень открытия на обратном	
Место установки	
Тип трубопровода	
Располагаемый напор, м	
Располагаемый напор на выходе, м	v .
LU	

Рисунок 20.17. Открытие справочника по запорной арматуре

Примечание

Кнопка ... будет видна только, когда активна правая часть строки Марка.

20.3.2. Выбор марки запорной арматуры из справочника

Запорная арматура это объект сети, который характеризуется двумя режимами: открыта и закрыта. Причем открыта- это режим, зависящий от степени открытия (в %) либо от угла поворота задвижки (в град.).

При заполнении таблицы исходных данных по запорной арматуре возможно два варианта:

- Не задавать марку запорной арматуры. В этом случае устройство будет считаться полностью открытым и не создавать никакого гидравлического сопротивления. Исходной информацией в этом случае является только геодезическая отметка;
- Задавать марку запорной арматуры. Если задавать конкретную марку запорного устройства, то дополнительно необходимо указать Условный диаметр и Степень открытия каждого устройства.

Для выбора марки запорной арматуры следует:

- 1. Открыть окно семантической информации по конкретной задвижке (3);
- 2. Установить курсор с правой стороны от строки Марка задвижки на подающем или Марка задвижки на обратном и нажать кнопку

Задвижка	_ 🗆 🔺 X
🔡 H 🔸 🕨 🔂 🐼 🕶 🔂 🖬 🖆 🖆	🛉 📓 📽 🖀 🥵
Текущая запись Запрос База Ответ	►
Наименование арматуры	^
Номер источника	
Наименование источника	
Геодезическая отметка, м	
Марка задвижки на подающем	x
Условный диаметр на подающем, м	L. L
Степень открытия на подающем	
Марка задвижки на обратном	
Условный диаметр на обратном, м	
Степень открытия на обратном	
Место установки	
Тип трубопровода	
Располагаемый напор, м	
Располагаемый напор на выходе, м	v .

Рисунок 20.18. Выбор марки запорной арматуры

- В открывшемся окне Справочник по запорной арматуре с помощью левой кнопки мыши выделить необходимую марку (для поиска нужной марки можете воспользоваться полосой прокрутки);
- 4. Нажать кнопку Выбор.

(i) Примечание

Кнопка ... будет видна только, когда активна правая часть строки Марка.

Предупреждение

Если вы впишите марку в таблицу исходных данных с клавиатуры, не занеся предварительно эти данные в справочник запорной арматуры, то расчет выдаст ошибку в строке Марка, в связи с тем, что в справочнике эта информация отсутствует.

20.3.3. Добавление марки в справочник

Если в справочнике запорной арматуры необходимая вам марка отсутствует, то нужно занести новую марку в справочник самостоятельно. Для этого следует:

- 1. Нажать кнопку 😧 на панели инструментов. Откроется справочник по запорным устройствам;
- 2. В появившемся окне, нажать кнопку Добавить. В справочнике запорной арматуры в конец списка добавится новая строка.

		Справочник по запор	оной армат	уре					×
		Запорная арм	атура						
	ID	Марка арматуры	Тип	1					^
	9	Лудло с выемкой для клапана, концевая	0						
	10	Вентиль d=38 мм	0						
	11	Вентиль d=200 мм	0						
	12	Задвижка "Москва"	0						
	13	Чугунная параллельная задвижка шириной 0.4 d при d/dm=1.5	0						
	14	Чугунная параллельная задвижка шириной 0.4 d при d/dm=1.25	0						
	22	Задвижка "Москва"1	0						
	23	Простая без выемки для клапана 1	0						
	27	Valve_1	0						
►	33		0						
			1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0	25 50	75	100 12	5 150	175	200
				Коэффици	ент ме	CTHOIO CO	противл	тения	~~~~

Рисунок 20.19. Добавление марки запорной арматуры

- 1. Занести в поле Марка арматуры название арматуры;
- 2. Указать в поле Тип, тип запорного устройства.
 - Если в поле тип- 0, то в таблице местных сопротивлений указаны: степень от-крытия (в %);

- Если в поле тип- 1, то в таблице: угол поворота закрытия задвижки (в град.).
- 3. В таблице местных сопротивлений задать степень открытия задвижки (в %) или угол поворота (в град.) и соответствующее сопротивление. После ввода первой строки нажать * для добавления следующей строки.

	Мести	ные сопротивления
	Угол поворота, град	Сопротивление
*	10	180
		~5

Рисунок 20.20. Добавление характеристики запорной арматуры

При вводе значений автоматически в правой части окна будет выстраиваться график зависимости коэффициента местного сопротивления от степени открытия.

20.3.4. Импорт данных по запорным устройствам

Импортировать, возможно, исходные данные, полученные в результате экспорта. Для этого надо:

- 1. Нажать кнопку 💌 на панели инструментов для открытия справочника по запорным устройствам;
- 2. Нажать на кнопку Импорт в диалоговом окне Справочник по запорной арматуре;
- 3. В раскрывшемся окне указать файл, из которого будет производиться импорт.

20.3.5. Экспорт данных по запорным устройствам

Система позволяет экспортировать данные по запорной арматуре в текстовый файл. Для экспорта надо:

- Нажать кнопку () на панели инструментов для открытия справочника по запорным устройствам;
- 2. Выделить строку с необходимой маркой арматуры;
- 3. Нажать кнопку Экспорт;
- 4. В строке Имя файла задать имя для экспортируемого текстового файла;
- 5. Нажать кнопку Сохранить.

20.3.6. Удаление запорного устройства из справочника

Если будет необходимость какое-то запорное устройство удалить, то для этого надо:

- 1. Нажать кнопку 💌 на панели инструментов для открытия справочника по запорным устройствам;
- 2. Выделить строку с маркой запорной арматуры, которую необходимо удалить;
- 3. Нажать кнопку Удалить и при заданном вопросе: «Вы действительно хотите удалить запорное устройство?», нажать- Да.

20.4. Справочник по теплоносителям

- Открытие справочника по теплоносителям; (<u>Раздел 20.4.1, «Открытие справочни-ка»</u>)
- Добавление нового теплоносителя в справочник; (<u>Раздел 20.4.2</u>, «<u>Добавление ново-</u> го теплоносителя в справочник»)
- Редактирование существующего теплоносителя; (<u>Раздел 20.4.3</u>, «<u>Редактирование</u> существующего теплоносителя»)
- Удаление теплоносителя из справочника; (<u>Раздел 20.4.4</u>, «Удаление теплоносителя из справочника»)
- Переименование теплоносителя; (<u>Раздел 20.4.5, «Переименование теплоносителя»</u>)

Справочник по теплоносителю позволяет отредактировать и занести новые виды теплоносителя, такие как этиленгликоль, пропиленгликоль и другие. В дальнейшем внесенные характеристики жидкости могут участвовать в расчетах.

20.4.1. Открытие справочника

Для того чтобы открыть справочник по теплоносителям следует:

1. Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку панели инструментов. На экране появится окно теплогидравлических расчетов (см. Рисунок 20.21, «Окно теплогидравлических расчетов ZuluThermo»).

ZuluTher	mo						_ • ×
							Слой
Наладка	Поверка	Температу	рный график	Конструкторский	Надежность	Сервис	Оборудование
Сучет Сучет По По Сопла Диама констр расчет	ом утечек ом тепловы норм. поте изоляции и шайбы из етры из рукторского га	их потерь рям з наладки р					
			Раскраска	<het></het>			~
Расчет	Ha	стройки	Справка	Закрыты			

Рисунок 20.21. Окно теплогидравлических расчетов ZuluThermo

- 2. Нажать кнопку Слой... и выбрать слой тепловой сети;
- 3. Нажать кнопку Настройки;
- 4. Перейти во вкладку Теплоноситель;
- 5. Нажать кнопку Редактировать. Откроется окно справочника по теплоносителям, показанное на<u>Рисунок 20.22, «Окно справочника по теплоносителям»</u>.

		Тепло	носитель		
Названи	ие теплоносителя:	Зода		۷	Добавить теплоносител
T, °C	Плотность, кг/м3	Дин.вязкость, Н*с/м2*10-3	Теплоемкость, КДж/кг*К	^	Удалить теплоноситель
0.0	999.8255	1.7895386710	4.217		
5.0	1000.0171	1.5172659448	4.204		Переименовать
10.0	999.7918	1.3053261745	4.193		
15.0	999.2104	1.1371943618	4.186		
20.0	998.3197	1.0013745583	4.182		Добавить строку
25.0	997.1563	0.8899313851	4.181		D
30.0	995.7484	0.7972466535	4.179		Вставить строку
35.0	994.1188	0.7192514136	4.178		
40.0	992.2854	0.6529377844	4.179		9далить строку
45.0	990.2629	0.5960427054	4.181		
50.0	988.0633	0.5468348396	4.182		
55.0	985.6972	0.5039702215	4.183		
60.0	983.1735	0.4663915526	4.185		
65.0	980.5004	0.4332568493	4.188		Соураниян
70.0	977.6850	0.4038877351	4.190		солранить
75.0	974.7337	0.3777327024	4.194		Выход
00.0	071 0500	0.0540004005	4.107	~	2-Dinog

Рисунок 20.22. Окно справочника по теплоносителям

В строке Название теплоносителя выбирается теплоноситель для редактирования.

Каждая кнопка выполняет соответствующее ей действие:

- Добавить теплоноситель- добавляет новый теплоноситель в справочник;
- Удалить теплоноситель- удаляет теплоноситель из справочника;
- Переименовать- меняет имя для выбранного теплоносителя;
- Добавить строку добавляет новую строку в конец списка;
- Вставить строку вставляет пустую строку, перед выделенной строкой;
- Удалить строку- удаляет выделенную строчку из списка.

20.4.2. Добавление нового теплоносителя в справочник

Для того чтобы добавить новый теплоноситель следует:

- 1. Открыть справочник по теплоносителям;
- 2. Нажать кнопку Добавить теплоноситель. Ввести имя нового теплоносителя;
- 3. В появившейся таблице ввести температуру, плотность, динамическую вязкость и теплоёмкость теплоносителя, как показано на<u>Рисунок 20.23, «Пример добавления теплоносителя»</u>. Для добавления новой строки использовать кнопку Добавить строку;

4. Нажать кнопку Сохранить для сохранения теплоносителя.

		Тепло	носитель	
Название теплоносителя:		Этиленгликоль 52% (-40)	Добавить теплоносите	
T, °C	Плотность, кг/м3	Дин.вязкость, H*c/м2*10-3	Теплоемкость, КДж/кг*К	Удалить теплоноситель
-40.0	1108.0000	110.800000000	3.040	
-20.0	1100.0000	27.500000000	3.110	Переименовать
0.0	1092.0000	10.370000000	3.190	
20.0	1082.0000	4.8700000000	3.260	
40.0	1069.0000	2.570000000	3.340	Добавить строку
60.0	1057.0000	1.590000000	3.410	D
80.0	1045.0000	1.050000000	3.490	вставить строку
100.0	1032.0000	0.7220000000	3.560	Удалить строку
				Сохранить
				Выход

Рисунок 20.23. Пример добавления теплоносителя

20.4.3. Редактирование существующего теплоносителя

Для изменения существующего теплоносителя надо:

- 1. В строке Название теплоносителя выбрать теплоноситель;
- Внести изменения. Чтобы вставить строчку в определенном месте, следует выделить строчку и нажать кнопку Вставить строку, перед выделенной строкой вставиться пустая строка. Кнопка Добавить строку служит для добавления новой строки в конец списка;
- 3. Нажать кнопку Сохранить для сохранения изменений.

20.4.4. Удаление теплоносителя из справочника

Для удаления теплоносителя из справочника

- 1. В строке Название теплоносителя выбрать теплоноситель;
- 2. Нажать кнопку Удалить теплоноситель;
- 3. Нажать кнопку Сохранить для сохранения изменений.

20.4.5. Переименование теплоносителя

Для того, чтобы переименовать теплоноситель следует:

- 1. В строке Название теплоносителя выбрать теплоноситель;
- 2. Нажать кнопку Переименовать;
- 3. Ввести новое название теплоносителя и нажать ОК;

4. Нажать кнопку Сохранить для сохранения изменений.

20.5. Справочник по местным сопротивлениям

- Открытие справочника по местным сопротивлениям; (<u>Раздел 20.5.1</u>, «<u>Открытие</u> справочника по местным сопротивлениям»)
- Занесение местных сопротивлений; (<u>Раздел 20.5.2</u>, «Занесение местных сопротив-<u>лений»</u>)

Учет местных сопротивлений, установленных на участках тепловой сети, осуществляется с помощью справочника по местным сопротивлениям. Он позволяет рассчитать сумму коэффициентов, если известно количество и виды сопротивлений (задвижки, компенсаторы и т.д.). С его помощью вносится информация о местных сопротивлениях по каждому участку сети.

20.5.1. Открытие справочника по местным сопротивлениям

Для открытия справочника местных сопротивлений следует:

- ^{1.} На панели Навигация нажать кнопку ⁽¹⁾;
- Подвести курсор мыши к участку тепловой сети и щелкнуть левой клавишей мыши (слой при этом должен быть активным или удерживать при щелчке Ctrl+Shift). Откроется окно с семантической информацией по данному участку;
- Установить курсор на поле Местные сопротивления под. тр-да (Местные сопротивления обр. тр-да) и нажать кнопку Откроется окно справочника местных сопротивлений. (см. Рисунок 20.24, «Открытие справочника по местным сопротивления»). О занесении местных сопротивлений смотрите следующий раздел <u>Раздел 20.5.2</u>, «Занесение местных сопротивлений»

Участок	_ 🗆 🔺 X
📲 H 4 🕨 H 🔂 🖬 🖌 H	🖆 🞽 📓 📽 🖀
Текущая запись Запрос База Ответ	►
Номер источника	^
Балансодержатель	
Наименование начала участка	
Наименование конца участка	
Длина участка, м	
Внутренний диаметр подающего трубопровода, м	
Внутренний диаметр обратного трубопровода, м	
Сумма коэф. местных сопротивлений под. тр-да	
Местные сопротивления под.тр-да	
Сумма коэф. местных сопротивлений обр. тр-да	12 A
Местные сопротивления обр.тр-да	
Шероховатость подающего трубопровода, мм	
Шероховатость обратного трубопровода, мм	
Зарастание подающего трубопровода	

Рисунок 20.24. Открытие справочника по местным сопротивлениям

Местные сопротивления	Козф	Коли	~
Задвижка	0.5		
Вентиль с косым шпинделем	0.5		
Вентиль с вертикальным шпинделем	6.0		
Обратный клапан нормальный	7.0		
Обратный клапан "Захлопка"	3.0		
Кран проходной	2.0		
Компенсатор однолинзовый без рубашки	1.0		
Компенсатор однолинзовый с рубашкой	0.1		
Компенсатор сальниковый	0.3		
Компенсатор П-образный	2.8		
Отвод, гнутый под углом 90°, со складками R = 3d	0.8		
Отвод, гнутый под углом 90°, со складками R = 4d	0.5		
Отвод, гнутый под углом 90°, гладкий R = 1d	1.0		
Отвод, гнутый под углом 90°, гладкий R = 3d	0.5		
Отвод, гнутый под углом 90°, гладкий R = 4d	0.3		
Отвод сварной одношовный под углом 30°	0.2		
Отвод сварной одношовный под углом 45°	0.3		
Отвод сварной одношовный под углом 60°	0.7		
Отвод сварной двухшовный под углом 90°	0.6		
Отвод сварной трехшовный под углом 90°	0.5		
Тройник при слиянии потока на проходе	1.2		
Тройник при слиянии потока на ответвлении	1.8		
Тройник при разветвлении потока на проходе	1.0		
Тройник при разветвлении потока на ответвлении	1.5		
Тройник при встречном потоке	3.0		
Внезапное расширение	1.0		
Внезапное сужение	0.5		
Грязевик	10.0		~

Рисунок 20.25. Справочник по местным сопротивлениям

20.5.2. Занесение местных сопротивлений

Для занесения местных сопротивлений следует указать количество объектов в столбце Количество. Для этого следует:

- 1. Открыть справочник по местным сопротивлениям;
- Указать в столбце Количество напротив нужного местного сопротивления их количество. В случае, если в справочнике не оказалось нужного нам объекта, установленного на участке, следует занести его коэффициент местного сопротивления в строку Прочие.

Местные сопротивления	Козф	. Коли	~
Задвижка	0.5	3	
Вентиль с косым шпинделем	0.5		
Вентиль с вертикальным шпинделем	6.0		
Обратный клапан нормальный	7.0		
Обратный клапан "Захлопка"	3.0		
Кран проходной	2.0		
Компенсатор однолинзовый без рубашки	1.0		
Компенсатор однолинзовый с рубашкой	0.1		
Компенсатор сальниковый	0.3		
Компенсатор П-образный	2.8	2	1
Отвод, гнутый под углом 90°, со складками R = 3d 👘	0.8		- -
Отвод, гнутый под углом 90°, со складками R = 4d	0.5		
Отвод, гнутый под углом 90°, гладкий R = 1d	1.0		
Отвод, гнутый под углом 90°, гладкий R = 3d	0.5		
Отвод, гнутый под углом 90°, гладкий R = 4d	0.3		
Отвод сварной одношовный под углом 30°	0.2		
Отвод сварной одношовный под углом 45°	0.3		
Отвод сварной одношовный под углом 60°	0.7		
Отвод сварной двухшовный под углом 90°	0.6		
Отвод сварной трехшовный под углом 90°	0.5		
Тройник при слиянии потока на проходе	1.2		
Тройник при слиянии потока на ответвлении	1.8		
Тройник при разветвлении потока на проходе	1.0		
Тройник при разветвлении потока на ответвлении	1.5		
Тройник при встречном потоке	3.0		
Внезапное расширение	1.0		
Внезапное сужение	0.5		
Грязевик	10.0		~

Рисунок 20.26. Внесение местных сопротивлений

- 3. Ввести с клавиатуры количество объектов. Общая сумма всех коэффициентов будет автоматически указана ниже в строке Сумма;
- 4. Нажать кнопку ОК.

После занесения информации в справочник местных сопротивлений, в строке базы данных *Местные сопротивления под.* (обр.) тр-да появится информация о коде местного сопротивления и количестве этих сопротивлений, например, 0.0;2;0;0;0;0;3. Коэффициенты суммируются и итоговое значение суммы местных сопротивлений запишется в поле *Сумма коэф. местных сопротивлений под.* (обр.) *тр-да.* (см.<u>Рисунок 20.27, «Сумма коэффициентов местных сопротивлений»).</u>

Участок *	_ 🗆 🔺 X
🔡 H 4 🕨 H 🔁 🖬 🗸 - 🗳 🌿	🖆 🞽 🕍 🕍 🖆
Текущая запись Запрос База Ответ	۱.
Номер источника	^
Балансодержатель	
Наименование начала участка	
Наименование конца участка	
Длина участка, м	
Внутренний диаметр подающего трубопровода, м	
Внутренний диаметр обратного трубопровода, м	
Сумма коэф. местных сопротивлений под. тр-да	7.1 N
Местные сопротивления под.тр-да	0.0;3; ť% ;0;0;0;0;0;0;2;0,
Сумма коэф. местных сопротивлений обр. тр-да	
Местные сопротивления обр.тр-да	
Шероховатость подающего трубопровода, мм	
Шероховатость обратного трубопровода, мм	
Зарастание подающего трубопровода	×
	· ·

Рисунок 20.27. Сумма коэффициентов местных сопротивлений

20.6. Справочник по коэффициентам часовой неравномерности

- Открытие справочника часовой неравномерности; (<u>Раздел 20.6.1</u>, «<u>Открытие справочника часовой неравномерности</u>»)
- Добавление зависимости в справочник; (<u>Раздел 20.6.2</u>, «<u>Добавление зависимости в</u> справочник»)

Справочник по коэффициентам часовой неравномерности позволяет добавлять и редактировать графики часовой неравномерности потребления ГВС.

20.6.1. Открытие справочника часовой неравномерности

Чтобы открыть окно справочника следует:

1. Выбрать команду главного меню Задачи ZuluThermo, либо нажать кнопку нели инструментов. Откроется панель выполнения теплогидравлических расчетов (см. Рисунок 20.28, «Панель теплогидравлических расчетов»).

ZuluThermo					_ • ×
Пример тепловой сети					Слой
Наладка Поверка Температ	урный график	Конструкторский	Надежность	Сервис	Оборудование
 С учетом утечек С учетом тепловых потерь По норм. потерям По изоляции Сопла и шайбы из наладки Диаметры из конструкторского расчета 	— У Прим 	чер тепловой сети Северная			
	Раскраска	<нет>			¥
Расчет Настройки	Справка	Закрыты			

Рисунок 20.28. Панель теплогидравлических расчетов

- 2. Нажмите кнопку Слой..., выберите слой тепловой сети в открывшемся диалоге и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;
- 3. Далее нажмите кнопку Настройки, откроется диалог настройки расчетов для выбранного слоя (см. <u>Рисунок 20.29</u>, «<u>Диалог настройки расчетов</u>. <u>Вкладка «ГВС»</u>»).

-	1 1	отери нап	opa	Теплоноси	тель	דע	ечки
Протокол расчета	Раскрасн	(a TBC	Исж	одные данные	Надежи	ность	Hasp
Учитывать неравн	юмерност	ь потребле	ния гор	ячей воды			
Напалочный	расчет	Pa	счетная	нагрузка:			
Поверочный	расчет		🖲 Макс	имальная			
Конструктор	ский расч	ет					
Konorpykrop	orann paca						
Коэффициенты	часовой н	еравномер	оности				
CП41-101-95			~	Просмотр			
паладка последов	вательных	схем на	отопите	льный расход		×	
Брать долю на цир	куляцию	по средне	му расх	олу на ГВС		1	
		ine op option					

Рисунок 20.29. Диалог настройки расчетов. Вкладка «ГВС»

4. Нажмите кнопку Просмотр. Откроется окно справочника по коэффициентам часовой неравномерности. <u>Рисунок 20.30</u>, «Окно справочника часовой неравномерности»

Рисунок 20.30. Окно справочника часовой неравномерности

20.6.2. Добавление зависимости в справочник

Для добавления новой зависимости в справочник следует:

- 1. Открыть справочник по коэффициентам часовой неравномерности.
- 2. Нажать кнопку Добавить
- 3. В открывшемся окне (<u>Рисунок 20.31, «Добавление новой зависимости»</u>) введите название новой пользовательской зависимости.

Рисунок 20.31. Добавление новой зависимости

4. В ячейки Число жителей и Кч введите пользовательские значения. Нажмите стрелку вниз для добавления новой строки. <u>Рисунок 20.32</u>, «Добавление пользовательских значений»

Рисунок 20.32. Добавление пользовательских значений

5. Заполните необходимое количество строчек для построения графика изменения коэффициентов часовой неравномерности. График строится автоматически по указанным в таблице значениям. <u>Рисунок 20.33, «Пользовательская зависимость»</u>

Рисунок 20.33. Пользовательская зависимость

6. Нажмите кнопку Сохранить для сохранения изменений.

20.7. Справочник по теплопроводности изоляции

- Открытие справочника по изоляции; (<u>Раздел 20.7.1</u>, «<u>Открытие справочника по изоляции</u>»)
- Добавление изоляции в справочник; (<u>Раздел 20.7.2</u>, «<u>Добавление изоляции в справочник</u>»)
- Редактирование справочника по изоляции; (<u>Раздел 20.7.3</u>, «<u>Редактирование справочника по изоляции</u>»)

Справочник по теплопроводности изоляции позволяет редактировать и создавать различные теплоизоляционные материалы. В дальнейшем внесенные характеристики изоляции могут участвовать в расчетах *с учетом тепловых потерь по изоляции*. Справочник может быть отредактированным пользователем по собственному усмотрению, то есть удалены все неиспользуемые материалы, созданы собственные.

20.7.1. Открытие справочника по изоляции

Чтобы открыть окно справочника следует:

1. Выбрать команду главного меню Задачи ZuluThermo, либо нажать кнопку нели инструментов. Откроется панель выполнения теплогидравлических расчетов (см. Рисунок 20.34, «Панель теплогидравлических расчетов»).

ZuluThermo					_ • ×
Пример тепловой сети					Слой
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование
 С учетом утечек С учетом тепловых По норм. потер: По изоляции Сопла и шайбы из Диаметры из конструкторского расчета 	к потерь ям наладки	ер тепловой сети еверная			
	Раскраска 🗸	(нет>			¥
Расчет Наст	гройки Справка	Закрыты			

Рисунок 20.34. Панель теплогидравлических расчетов

- 2. Нажмите кнопку Слой..., выберите слой тепловой сети в открывшемся диалоге и нажмите кнопку ОК чтобы подтвердить выбор и закрыть диалог;
- 3. Далее нажмите кнопку Настройки (<u>Рисунок 9.1, «Панель теплогидравлических расчетов»</u>), откроется диалог настройки расчетов для выбранного слоя (см.<u>Рисунок 20.35, «Диалог настройки расчетов. Вкладка «Тепловые потери»»</u>).

Протокол расчета Ра	скраска ГВС	Исход	ные данные	Надежно	сть Назр
Тепловые потери	Потери напо	pa	Теплоноси	тель	Утечки
Коэффициент мес	тных тепловых по	терь (D -	<= 0.15 м)	1.2	
Коэффициент ме	стных тепловых п	отерь (D	> 0.15 м)	1.15	
Компенсирова	ть потери расходо	ом для ш	айбовых ввод	юв	
	• Для всех	потребит	гелей		
	Кроме по	требител	ей после ЦТГ	1	
Мак	симальный относ	ительны	й расход 1.2	2	
Cn	равочник по изол	яции тру	бопроводов		

Рисунок 20.35. Диалог настройки расчетов. Вкладка «Тепловые потери»

	теплопроводноств изоляции									
Гепл	ювая сеть		λ_i	$= \lambda$	+K * 7					
N	Название	Lambda	K	^	Лобавить					
1	Асбестовый матрац, заполненный совелитом	0.087	0.000120							
2	Асбестовый матрац, заполненный стекловол	0.058	0.000230		9далить					
3	Асботкань в несколько слоев	0.130	0.000260							
4	Асбестовый шнур	0.120	0.000310							
5	Асбестовый шнур (ШАОН)	0.130	0.000260							
6	Асбопухшнур (ШАП)	0.093	0.000200							
7	Асбовермикулитовые изделия марки 250	0.081	0.000230							
8	Асбовермикулитовые изделия марки 300	0.087	0.000230							
9	Битумоперлит	0.120	0.000230							
10	Битумокерамзит	0.130	0.000230							
11	Битумовермикулит	0.130	0.000230							
12	Вулканитовые плиты марки 300	0.074	0.000150							
13	Диатомовые изделия марки 500	0.116	0.000230							
14	Диатомовые изделия марки 600	0.140	0.000230							
15	Известково-кремнеземистые изделия марки	0.069	0.000150							
16	Маты минераловатные прошивные марки 100	0.045	0.000200							
17	Маты минераловатные прошивные марки 125	0.049	0.000200							
18	Маты и плиты из минеральной ваты марки 75	0.043	0.000220							
19	Маты и полосы из непрерывного стекловоло	0.040	0.000260							
20	Маты и плиты стекловатные марки 50	0.042	0.000280							
21	Пенобетонные изделия	0.110	0.000300							
22	Пенопласт ФРП-1 и резопен группы 100	0.043	0.000190							
23	Пенополимербетон	0.070	0.000000							
24	Пенополиуретан	0.050	0.000000							
25	Перлитоцементные изделия марки 300	0.076	0.000185		Сохранить					
26	Перлитоцементные изделия марки 350	0.081	0.000185							
27	Плиты минерадоватные полужесткие марки	0.044	0.000210	¥	Закрыты					

Рисунок 20.36. Окно «Теплопроводность изоляции»

20.7.2. Добавление изоляции в справочник

- 1. Открыть справочник по изоляции (<u>Раздел 20.7.1, «Открытие справочника по изоляции»</u>);
- 2. Нажать кнопку Добавить. В справочнике в конец списка добавится новая строка.
- 3. В появившейся строке следует ввести:
 - Название материала изоляции
 - Lambda-коэффициент теплопроводности, Вт/(м*К)
 - К- коэффициент, учитывающий изменение коэффициента теплопроводности изоляции при изменении температуры. (В случае если этот коэффициент неизвестен, принимается равным 0)

Гепл	овая сеть		λ	$= \lambda$	+K * T
			$ \gamma_i $	- 7	11 * 11
N	Название	Lambda	K	^	Добавить
19	Маты и полосы из непрерывного стекловоло	0.040	0.000260		
20	Маты и плиты стекловатные марки 50	0.042	0.000280		Удалить
21	Пенобетонные изделия	0.110	0.000300		
22	Пенопласт ФРП-1 и резопен группы 100	0.043	0.000190		
23	Пенополимербетон	0.070	0.000000		
24	Пенополиуретан	0.050	0.000000		
25	Перлитоцементные изделия марки 300	0.076	0.000185		
26	Перлитоцементные изделия марки 350	0.081	0.000185		
27	Плиты минераловатные полужесткие марки	0.044	0.000210		
28	Плиты минераловатные полужесткие марки	0.047	0.000185		
29	Плиты и цилиндры минераловатные марки 250	0.056	0.000185		
30	Плиты стекловатные полужесткие марки 75	0.044	0.000230		
31	Полуцилиндры и цилиндры минераловатные	0.049	0.000200		
32	Полуцилиндры и цилиндры минераловатные	0.052	0.000185		
33	Совелитовые изделия марки 350	0.076	0.000185		
34	Совелитовые изделия марки 400	0.078	0.000185		
35	Скорлупы минераловатные оштукатуренные	0.069	0.000190		
36	Фенольный поропласт ФЛ монолит	0.050	0.000000		
37	Шнур минераловатный марки 200	0.056	0.000185		
38	Шнур минераловатный марки 250	0.058	0.000185		
39	Шнур минераловатный марки 300	0.061	0.000185		
40	Изол 1	0.027	0.000000		
41	Изол 2	0.025	0.000000		
42	Изол 3	0.026	0.000000		
43	Изол 4	0.024	0.000000		Сохранить
44	Синтетический каучук	0.036	0		

Рисунок 20.37. Окно «Теплопроводность изоляции»

4. Нажать кнопку Сохранить для сохранения изменений.

20.7.3. Редактирование справочника по изоляции

Для редактирования справочника по изоляции следует:

- 1. Открыть справочник по изоляции (<u>Раздел 20.7.1, «Открытие справочника по изоляции»</u>);
- 2. Внести изменения. Чтобы удалить строку в определенном месте, следует выделить ее и нажать кнопку Удалить. Кнопка Добавить служит для добавления новой строки в конец списка;

3. Нажать кнопку Сохранить для сохранения изменений.

Lambda 0.045 0.049 0.043 0.050 0.050 0.036	$\begin{array}{c} K \\ K \\ 0.000200 \\ 0.000220 \\ 0.000020 \\ 0.000000 \\ 0 \end{array}$	А + К * Т Добавить Удалить
Lambda 0.045 0.049 0.043 0.050 0.036	K 0.000200 0.000200 0.000200 0.000000 0	Добавить Удалить
0.045 0.049 0.043 0.050 0.036	0.000200 0.000200 0.000020 0.000000 0	Удалить
0.049 0.043 0.050 0.036	0.000200 0.000220 0.000000 0	Удалить
0.043 0.050 0.036	0.000220	
0.050	0.00000	
0.036	0	
		Сохраните

Рисунок 20.38. Окно «Теплопроводность изоляции»

Глава 21. Подбор оборудования Danfoss

В ZuluThermo реализована возможность по подбору оборудования компании Danfoss.

Программный комплекс позволяет произвести автоматический подбор запорной арматуры – шаровых кранов типа ЛР. В качестве результата расчёта выдаётся кодовый номер шарового крана и кодовый номер привода (в случае электропривода) и полная техническая информация по оборудованию.

Также в программный комплекс включены следующие типы регуляторов прямого действия: AFP/VFG2 – регуляторы перепада давлений, AFD/VFG2 – регуляторы давления "после себя", AFA/VFG2 – регуляторы подпора, PCV – версии вышеозначенных регуляторов с пилотным контуром на повышенные расходы. В качестве результата расчёта выдаётся кодовый номер клапана, регулирующего блока и импульсной трубки и полная техническая информация по оборудованию. Все поля имеют всплывающие подсказки.

Подбор регуляторов фирмы Danfoss производится для узловых элементов с типом Дросселирующий узел со следующими режимами: Вычисляемая шайба, Устанавливаемая шайба, Регулятор напора, Регулятор давления в подающем, Регулятор давления в обратном, Регулятор напора на обратном. Оборудование необходимо подбирать после проведения наладочного расчета.

Для объектов Задвижка реализована возможность по подбору шаровых кранов компании Danfoss. Подбор оборудования следует проводить после проведения наладочного расчета.

21.1. Подбор шаровых кранов фирмы Danfoss

В ZuluThermo для объектов Задвижка реализована возможность по подбору шаровых кранов компании Danfoss. Подбор оборудования следует проводить после проведения наладочного расчета.

- Раздел 21.1.1, «Открытие окна подбора»;
- Раздел 21.1.2, «Добавление полей в базу данных»;
- Раздел 21.1.3, «Занесение исходных данных»;
- <u>Раздел 21.1.4, «Подбор ШК»;</u>
- <u>Раздел 21.1.5, «Очистка полей по ШК»;</u>
- <u>Раздел 21.1.6, «Открытие справочника ШК Danfoss»;</u>
- <u>Раздел 21.1.7, «Пример подбора шаровых кранов Danfoss»;</u>
- Раздел 21.1.8, «Справочная информация по полям ШК Danfoss».

21.1.1. Открытие окна подбора

Для открытия окна подбора шаровых кранов следует:

- Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку нели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК.
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.

Іример тег	пловой сети	1					Слой
Наладка	Поверка	Температурны	й график	Конструкторский	Надежность	Сервис	Оборудование
Произво	дитель:	Danfoss			~		
Тип оборудования: Шаровые краны JIP 🗸 🗸							
Тип прис	оединения	по умолчанию:	Под при	нварку	~		
C)бновить по	ля	Подоб	рать шаровые кран	ы		
Оч	истить все	поля					
Заполни	пь исходнь	іе данные	Спр	авочник по кранам			
Расчет	Had	стройки С	правка	Закрыты			

Рисунок 21.1. Открытие окна подбора ШК

5. В списке Тип оборудования выбрать Шаровые краны JIP.

21.1.2. Добавление полей в базу данных

По умолчанию в базе данных по запорным устройствам поля для подбора ШК Danfoss отсутствуют. Для их добавления в базу следует:

- Выбрать команду главного меню Задачи | Zulu Thermo или нажать кнопку нели инструментов;
- Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Шаровые краны JIP;

6. Нажать кнопку Обновить поля. В результате в БД по задвижкам добавятся поля для шаровых кранов.

ример тепловой сети						Слой
Наладка Поверка	Температурный	график	Конструкторский	Надежность	Сервис	Оборудование
Производитель:	Danfoss			~		
Тип оборудования: Шаровые краны				~		
Тип присоединения	по умолчанию:	Под при	варку	¥		
Обновить по	ля	Подобј	рать шаровые кран	ы		
	поля					
Очистить все г						
Очистить все г Заполнить исходны	еданные	Спра	авочник по кранам			

Рисунок 21.2. Добавление полей ШК в базу данных

21.1.3. Занесение исходных данных

Перед началом подбора оборудования следует заполнить поля исходных данных. Часть значений может быть заполнена автоматически по результатам наладочного расчета. Для этого следует:

- Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку нели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3.
- 4. Перейти на вкладку Оборудование,
- 5. В списке Производитель выбрать Danfoss.
- 6. В списке Тип оборудования выбрать Шаровые краны JIP;
- В списке Тип присоединения по умолчанию выбрать необходимый тип (Под приварку или Фланцы);
- 8. Нажать кнопку Заполнить исходные данные.

ZuluTher	mo					_ • ×	
Пример тег	пловой сети	1				Слой	
Наладка	Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование	
Произво	дитель:	Danfoss		¥			
Тип обор	удования:	Шаровые краны JIP		~			
Тип прис	оединения	по умолчанию: Под пр	риварку	~			
0) бновить по	оля Подо	брать шаровые крані	ы			
Оч	истить все	поля					
Заполни	Заполнить исходные данные Справочник по кранам						
Расчет	Had	стройки Справка	Закрыты				

Рисунок 21.3. Заполнение исходных данных по ШК

В результате в базу автоматически добавиться информация о типе присоединения, рабочем давлении, типе привода и внутреннем диаметре шаровых кранов. Если диаметр подводящего трубопровода не соответствует ни одному из диаметров базы данных Danfoss, будет выдано предупреждение. Например:

Предупреждение Z301: ID=17 Не найден подходящий внутренний диаметр подающего трубопровода для ШК

(i) Примечание

Далее пользователь может уточнить исходные данные для каждого запорного устройства в ручном режиме. В частности, наличие электрического привода и наличие блока управления задается только вручную.

21.1.4. Подбор ШК

После занесения исходной информации можно провести подбор оборудования, для этого следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 6. Нажать кнопку Подобрать шаровые краны. Поля результатов заполнятся кодами ШК и кодами электрических приводов ШК (если они есть) из справочника Danfoss.

ример тепловой сети Слой								
Наладка	Поверка	Температурны	й график	Конструкторский	Надежность	Сервис	Оборудование	
Произво	дитель:	Danfoss			~			
Тип оборудования: Шаровые кр			ны JIP		~			
Тип прис	соединения	по умолчанию:	Под при	иварку	¥			
Обновить поля Подобрать шаровые краны								
L L								
04	истить все	поля						
Оч	истить все ить исходнь	поля не данные	Спр	авочник по кранам				

Рисунок 21.4. Подбор шаровых кранов

21.1.5. Очистка полей по ШК

Для очистки полей по шаровым кранам следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 6. Нажать кнопку Очистить все поля.

uluThermo					_ * ×	
Іример тепловой сети	I				Слой	
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование	
Производитель:		v				
Тип оборудования:	Шаровые краны JIP		¥			
Тип присоединения	по умолчанию: Под пр	иварку	*			
Обновить по	иля Подоб	о́рать шаровые крань	ы			
Очистить все г	поля					
Заполнить исходные данные Справочник по кранам						
Расчет Нас	тройки Справка	Закрыты				

Рисунок 21.5. Очистка полей по ШК

21.1.6. Открытие справочника ШК Danfoss

Для открытия справочника по шаровым кранам Danfoss следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Шаровые краны ЈІР;
- 6. Нажать кнопку Справочник по кранам. Откроется окно справочника.

Јаровые кр	аны					Привода		
Код	Присоединение	Дy	Py	Привод	^	Код	Ду ШК	Привод
065n0100	Под приварку	15	40	Рукоятка		065N81	99 65	AUMA, 3 x 380 B, IP67
065n0105	Под приварку	20	40	Рукоятка		065N81	99 80	AUMA, 3 x 380 B, IP67
065n0110	Под приварку	25	40	Рукоятка		065N82	00 100	AUMA, 3 x 380 B, IP67
065n0115	Под приварку	32	40	Рукоятка		065N82	05 125	AUMA, 3 x 380 B, IP67
065n0120	Под приварку	40	40	Рукоятка		065N82	05 150	AUMA, 3 x 380 B, IP67
065n0125	Под приварку	50	40	Рукоятка		065N82	15 200	AUMA, 3 x 380 B, IP67
065n4280	Под приварку	65	25	Рукоятка		065N82	20 250	AUMA, 3 x 380 B, IP67
065n4285	Под приварку	80	25	Рукоятка		065N82	25 300	AUMA, 3 x 380 B, IP67
065n0140	Под приварку	100	25	Рукоятка		065N82	25 350	AUMA, 3 x 380 B, IP67
065n0745	Под приварку	125	25	Рукоятка		065N82	35 400	AUMA, 3 x 380 B, IP67
065n0750	Под приварку	150	25	Рукоятка		065N82	40 500	AUMA, 3 x 380 B, IP67
065n0755	Под приварку	200	25	Рукоятка		065N82	40 600	AUMA, 3 x 380 B, IP67
065n0151	Под приварку	150	25	Редуктор		065N83	99 65	AUMA с блоком управления AUMA
065n0156	Под приварку	200	25	Редуктор		065N83	99 80	AUMA с блоком управления AUMA
065n0161	Под приварку	250	25	Редуктор		065N84	00 100	AUMA с блоком управления AUMA
065n0166	Под приварку	300	25	Редуктор		065N84	05 125	AUMA с блоком управления AUMA
065n0171	Под приварку	350	25	Редуктор		065N84	05 150	AUMA с блоком управления AUMA
065n0176	Под приварку	400	25	Редуктор		065N84	15 200	AUMA с блоком управления AUM/
065n0181	Под приварку	500	25	Редуктор		065N84	20 250	АUMA с блоком управления AUM/
065n0186	Под приварку	600	25	Редуктор		065N84	25 300	AUMA с блоком управления AUM/
065n0300	Фланцы	15	40	Рукоятка		065N84	25 350	АUMA с блоком управления AUM/
065n0305	Фланцы	20	40	Рукоятка		065N84	35 400	AUMA с блоком управления AUMA
065n0310	Фланцы	25	40	Рукоятка		065N84	40 500	AUMA с блоком управления AUMA
065n0315	Фланцы	32	40	Рукоятка		065N84	40 600	АUMA с блоком управления AUMA
065n0320	Фланцы	40	40	Рукоятка				
065n0325	Фланцы	50	40	Рукоятка				
065n4281	Фланцы	65	25	Рукоятка	~			

Рисунок 21.6. Справочник ШК Danfoss

21.1.7. Пример подбора шаровых кранов Danfoss

Подбор шаровых кранов следует проводить после проведения наладочного расчета. Далее приведен пример подбора:

- Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку нели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Шаровые краны ЈІР.

ZuluThermo					_ • ×				
Пример тепловой сети					Слой				
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование				
Производитель:	Danfoss	· · · · · · · · · · · · · · · · · · ·	•						
Тип оборудования:	Шаровые краны JIP	~	·						
Тип присоединения г	Тип присоединения по умолчанию: Под приварку 🗸								
Обновить пол	ля Подоб	рать шаровые краны							
Очистить все п	юля								
Заполнить исходные	Заполнить исходные данные Справочник по кранам								
Расчет Нас	тройки Справка	Закрыты							

Рисунок 21.7. Открытие окна подбора ШК

6. Для добавления полей в базу данных нажать кнопку Обновить поля.

uluTher	mo						>
Пример тег	пловой сети	1					Слой
Наладка	Поверка	Температурный	график	Конструкторский	Надежность	Сервис	Оборудование
Произво,	дитель:	Danfoss			v		
Тип обор	удования:	Шаровые кран	њJIP		~		
Тип прис	оединения	по умолчанию:	Под при	иварку	~		
C)бновить по	оля	Подоб	рать шаровые кран	ы		
Оч	истить все	поля					
Заполни	пь исходнь	іе данные	Спр	авочник по кранам			
Расчет	Had	стройки Сі	правка	Закрыты			

Рисунок 21.8. Добавление полей ШК в базу данных

- В списке Тип присоединения по умолчанию выбрать необходимый тип (Под приварку или Фланцы);
- 8. Для автоматического занесения исходных данных нажать кнопку Заполнить исходные данные.

ZuluThermo					_ * ×
Пример тепловой сети					Слой
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование
Производитель:	Danfoss		~		
Тип оборудования:	Шаровые краны JIP		~		
Тип присоединения	по умолчанию: Под при	іварку	¥		
Обновить по	ля Подоб	рать шаровые крань	ы		
Очистить все г	оля				
Заполнить исходны	е данные Спра	авочник по кранам			
Расчет Нас	тройки Справка	Закрыты			

Рисунок 21.9. Добавление полей ШК в базу данных

9. Вручную по каждому объекту уточнить исходные данные. Например, тип и наличие электропривода;

10.После заполнения исходных данных нажать кнопку Подобрать шаровые краны.

ример тепловой сети Слой							
Наладка	Поверка	Температурный гра	фик Конструкторский	Надежность	Сервис	Оборудование	
Производитель:		Danfoss		*			
Тип оборудования:		Шаровые краны JIP		>			
Тип прис	оединения	по умолчанию: По,	д приварку	¥			
Обновить поля Подо			одобрать шаровые кран	њ			
Оч	истить все	поля					
Заполни	ять исходнь	іе данные	Справочник по кранам				

Рисунок 21.10. Подбор шаровых кранов

Поля результатов заполнятся кодами ШК и кодами электрических приводов ШК (если они есть) из базы данных Danfoss.

Задвижка	_ 🗆 🔺 X							
🔡 М 4 → И 🗔 🖬 🖇 - 🕒 🗹 🗳 🕌 🗳 🗯 🖆								
Текущая запись Запрос База Ответ								
Danfoss								
🖃 Подающий трубопровод								
Код ШК на подающем	065N0147							
Тип присоединения ШК на подающем	Под приварку							
Рабочее давление ШК на подающем	25							
Тип привода ШК на подающем	Электропривод							
Код привода ШК на подающем	065N8405							
Привод ШК на подающем	AUMA с блоком							
Управление приводом ШК на подающем	С блоком управ							
Внутренний диаметр ШК на подающем, мм	125							
🗆 Обратный трубопровод								
Код ШК на обратном	065N0147							
Тип присоединения ШК на обратном	Под приварку							
Рабочее давление ШК на обратном	25							
Тип привода ШК на обратном	Электропривод							
Код привода ШК на обратном	065N8405							
Привод ШК на обратном	AUMA с блоком							
Управление приводом ШК на обратном	С блоком управ							
Внутренний диаметр ШК на обратном, мм	125 💙							

Рисунок 21.11. Результаты подбора ШК

21.1.8. Справочная информация по полям ШК Danfoss

Жирным шрифтом выделены поля для записи результатов подбора ШК. Остальные поля являются полями исходных данных.

Имя поля	Пользовательское на-	Описание		
	именование поля			
DanCode_pod	Код ШК на подающем	Кодовый номер шарового крана типа JIP, используемый для заказа шарового крана у Danfoss либо партнёров.		
DanCode_obr	Код ШК на обратном			
DanConnect_pod	Тип присоединения ШК на подающем	Различают фланцевое и присоединение под приварку. Выбор производится в зави-		
DanConnect_obr	Тип присоединения ШК на обратном	симости от местных правил и норм.		
DanPy_pod	Рабочее давление ШК на подающем	Наибольшее избыточное рабочее давление при температуре рабочей среды 20		
DanPy_obr	Рабочее давление ШК на обратном	°С, при котором обеспечивается заданный срок службы соединений трубопроводов и арматуры, имеющих определенные размеры, обоснованные расчетом на прочность при выбранных материалах и характеристиках прочности их при температуре 20 °С. Ру шарового крана выбирается из условия, что Ру больше избыточного давления воды в трубопроводной системе сети.		
DanPrivType_pod	Тип привода ШК на по- дающем	В зависимости от Ду на шаровые краны типа ЛР возможна установка следующих		
Имя поля	Пользовательское на-	Описание		
------------------	--	--		
DanPrivType_obr	именование поля Тип привода ШК на об- ратном	типов управляющих элементов: Рукоятка, Ручной редукторный привод, Электриче- ский привод типа AUMA.		
DanPrivCode_pod	Код привода ШК на по- дающем	Кодовый номер электрического привода типа AUMA, используемый для заказа		
DanPrivCode_obr	Код привода ШК на об- ратном	электрического привода у Danfoss либо партнёров.		
DanPrivod_pod	Привод ШК на подаю- щем	Электрический привод AUMA- двухпо- зиционное управление (Открыть/Закрыть)		
DanPrivod_obr	Привод ШК на обрат- ном	шаровым краном в зависимости от входно- го сигнала. Электрический привод AUMA с блоком управления AUMA MATIC AM позволяет дополнительно управлять шаро- вым краном вручную, с помощью кнопок на блоке управления.		
DanPrivBlock_poo	Управление приводом ШК на подающем	Признак наличия блока управления приво- дом.		
DanPrivBlock_obr	Управление приводом ШК на обратном			
DanDy_pod	Внутренний диаметр ШК на подающем, мм	Внутренние диаметры шаровых кранов. Заполняются автоматически значениями		
DanDy_obr	Внутренний диаметр ШК на обратном, мм	диаметров участков, входящих в задвижки, при заполнении исходных данных.		

21.2. Подбор регуляторов прямого действия фирмы Danfoss

Подбор регуляторов фирмы Danfoss производится для узловых элементов с типом Дросселирующий узел со следующими режимами: Вычисляемая шайба, Устанавливаемая шайба, Регулятор напора, Регулятор давления в подающем, Регулятор давления в обратном, Регулятор напора на обратном. Оборудование необходимо подбирать после проведения наладочного расчета.

- Раздел 21.2, «Подбор регуляторов прямого действия фирмы Danfoss»;
- <u>Раздел 21.2.1, «Открытие окна подбора»;</u>
- <u>Раздел 21.2.3, «Настройка исходных данных для подбора»;</u>
- <u>Раздел 21.2.4, «Подбор регуляторов давления»;</u>
- <u>Раздел 21.2.5, «Очистка полей по регуляторам»;</u>
- <u>Раздел 21.2.6, «Пример подбора регуляторов Danfoss»;</u>
- Раздел 21.2.7, «Справочная информация по полям регуляторов Danfoss».

21.2.1. Открытие окна подбора

Для открытия окна подбора регуляторов следует:

- Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку нели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления.

ZuluThermo					>		
Пример тепловой сет	и				Слой		
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование		
Производитель: Тип оборудования:	Daníoss Регуляторы давления		~				
Обновить п	Обновить поля Подобрать регуляторы						
Очистить все Опции	поля						
🗌 Задать рабоч	Задать рабочее давление: 16 бар v						
🗌 Подбор под з	амену шайб						
Расчет На	стройки Справка	Закрыты					

Рисунок 21.12. Открытие окна подбора РД

21.2.2. Добавление полей в базу данных

По умолчанию в базе данных по дросселирующим устройствам поля для подбора регуляторов отсутствуют. Для их добавления в базу следует:

- Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку нели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления;
- 6. Нажать кнопку Обновить поля. В результате в БД по дросселирующим устройствам добавятся поля для регуляторов давления.

7 l Th							
Luiu i neri							
Пример тег	пловой сети	1					Слой
Наладка	Поверка	Температурный гр	рафик	Конструкторский	Надежность	Сервис	Оборудование
Произво	Производитель: Danfoss v						
Тип обор	Тип оборудования: Регуляторы давления 🗸						
0	Обновить поля Подобрать регуляторы						
Очі	истить все	поля					
Опции—							
🗌 За	□ Задать рабочее давление: 16 бар ∨						
🗌 Подбор под замену шайб							
Расчет	Расчет Настройки Справка Закрыть						

Рисунок 21.13. Добавление полей по регуляторам в базу данных

21.2.3. Настройка исходных данных для подбора

Перед началом подбора оборудования следует заполнить поля исходных данных. Исходные данные для подбора оборудования (давления, температура, расход) определяются по результатам наладочного расчета.

Часть значений может быть заполнена автоматически. Для этого следует:

- 1. Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления;
- 6. Рабочее давление регулятора определяется по наладочному расчету. При включенной опции Задать рабочее давление, давление можно задать вручную;
- 7. При включенной опции Подбор под замену шайб, оборудование будет так же подбираться и для дросселирующих узлов с шайбами, которые можно будет в дальнейшем заменить соответствующими регуляторами.

Важно

Т

При расчете под замену шайбы, шайба должна быть установлена только либо на подающем, либо на обратном трубопроводе. Если дросселирующий узел

имеет шайбы на обоих трубопроводах, при подборе оборудования будет выдано сообщение об ошибке.

ZuluThermo _ • ×							
Пример те	Пример тепловой сети Слой						
Наладка	Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование	
Произво	Производитель: Danfoss 🗸						
Тип обор	удования:	Регуляторы давления		~			
(Обновить по	ля Поде	обрать регуляторы				
Оч	истить все	поля					
Опции							
🗌 3a	Задать рабочее давление: 16 бар ∨						
🗌 Подбор под замену шайб							
Расчет	Расчет Настройки Справка Закрыть						

Рисунок 21.14. Настройка исходных данных для подбора

21.2.4. Подбор регуляторов давления

После занесения исходной информации можно провести подбор оборудования, для этого следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления;
- 6. Настроить исходные данные;
- 7. Нажать кнопку Подобрать регуляторы

uluThermo					_ • ×	
ример тепловой сети	1				Слой	
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование	
Производитель:	Производитель: Danfoss 🗸					
Тип оборудования:	Регуляторы давления		~			
Обновить поля Подобрать регуляторы						
Очистить все і	поля					
Опции						
Задать рабочее давление: 16 бар ∨						
🗌 Подбор под замену шайб						
Расчет Настройки Справка Закрыть						

Рисунок 21.15. Запуск подбора регуляторов

8. В результате поля базы данных заполнятся кодами приборов и их параметрами.

Дросселирующий узел	_ 🗆 4	×
😹 N 🔹 🕨 🛛 🔂 🐼	• 🕒 🗠 🖆 🎽 🖉 🎽	1
Текущая запись Запрос База Отв	ет	►
🗆 Danfoss		^
Ду трубы, мм	200	
Температура в месте устан	148.32	
Давление до, бар	6.82	
Давление после, бар	4.02	
Регулируемый перепад дав		
🖃 Клапан		
Тип клапана	VFG 2	
Код клапана	065B2393	
Ду клапана, мм	50	
Условная пропускная сп	32	
Рабочее давление клапа	16	
Материал клапана	Серый чугун EN-GJL-250 (GG-25)	
Коэффициент кавитации	0.5	
Регулирующий блок		
Тип регулирующего блока	AFD	
Код регулирующего блока	003G1002	
Нижняя настройка, бар	1	
Верхняя настройка, бар	6	
Текущая настройка, бар	4.02	
🖃 Импульсная трубка		
Тип импульсной трубки	AF	
Код импульсной трубки	003G1391	
Количество	1	Υ.

Рисунок 21.16. Результат подбора регуляторов

21.2.5. Очистка полей по регуляторам

Для очистки полей по регуляторам Danfoss следует:

1. Выбрать команду главного меню Задачи|ZuluThermo или нажать кнопку 🔁 на панели инструментов;

- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления;
- 6. Нажать кнопку Очистить все поля.

Іример тег	ловой сеть	4					Слой
Наладка	Поверка	Температурны	й график	Конструкторский	Надежность	Сервис	Оборудование
Производитель: Danfoss 🗸							
Тип оборудования: Регуляторы давления 🗸							
Обновить поля Подобрать регуляторы							
Оч	истить все	поля					
Опции—							
🗌 3aj	дать рабоч	ее давление:	16 бар	\sim			
🗌 Подбор под замену шайб							

Рисунок 21.17. Очистка полей по регуляторам

21.2.6. Пример подбора регуляторов Danfoss

Перед началом подбора оборудования следует обязательно провести наладочный расчет. После успешного проведения расчета можно подбирать регуляторы, для этого следует:

- 1. Выбрать команду главного меню Задачи ZuluThermo или нажать кнопку 🔁 на панели инструментов;
- 2. Нажать кнопку Слой... и в появившемся диалоговом окне с помощью левой кнопки мыши выбрать слой тепловой сети. Нажать кнопку ОК;
- 3. Перейти на вкладку Оборудование,
- 4. В списке Производитель выбрать Danfoss.
- 5. В списке Тип оборудования выбрать Регуляторы давления.

uluThermo					_ • ×		
Тример тепловой сети					Слой		
Наладка Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование		
Производитель: Danfoss 🗸							
Тип оборудования:	Регуляторы давления		~				
Обновить поля Подобрать регуляторы							
Очистить все п	юля						
Опции							
🗌 Задать рабоче	Задать рабочее давление: 16 бар ∨						
🗌 Подбор под замену шайб							
Расчет Нас	тройки Справка	Закрыты					

Рисунок 21.18. Открытие окна подбора

6. Нажать кнопку Обновить поля.

ZuluTher	mo					_ • ×	
Пример те	пловой сети	1				Слой	
Наладка	Поверка	Температурный график	Конструкторский	Надежность	Сервис	Оборудование	
Произво	Производитель: Danfoss 🗸						
Тип обор	удования:	Регуляторы давления		~			
(Обновить поля Подобрать регуляторы						
Оч	истить все	поля					
Опции—							
🗌 3a	☐ Задать рабочее давление: 16 бар ∨						
Πα	🗌 Подбор под замену шайб						
Расчет	Расчет Настройки Справка Закрыть						

Рисунок 21.19. Добавление полей по регуляторам в базу данных

7. Настроить исходные данные.

При включенной опции Задать рабочее давление, давление можно задать вручную. Рабочее давление регулятора определяется по наладочному расчету.

При включенной опции Подбор под замену шайб, оборудование будет так же подбираться и для дросселирующих узлов с шайбами, которые можно будет в дальнейшем заменить соответствующими регуляторами;

8. Нажать кнопку Подобрать регуляторы.

ZuluTherr	no						
Пример теп	іловой сети	I					Слой
Наладка	Поверка	Температурный граф	рик Конструк	торский	Надежность	Сервис	Оборудование
Производ	Производитель: Danfoss				~		
Тип оборудования: Регуляторы давления				~			
0	Обновить поля Подобрать регуляторы						
Очи	ютить все і	поля					
Опции—					_		
🗌 3ap	□ Задать рабочее давление: 16 бар ∨						
🗌 Под	🗌 Подбор под замену шайб						
Расчет	Had	тройки Справ	а Закр	рыть			

Рисунок 21.20. Запуск подбора регуляторов

9. В результате поля базы данных заполнятся кодами приборов и их параметрами.

Дросселирующий узел		. x
😹 k 🔺 🕨 k 🔂 🐼	• 🕒 🗠 🖆 🎽 🕯 🐔	Î
Текущая запись Запрос База Отв	ет	۱.
🗆 Danfoss		~
Ду трубы, мм	200	
Температура в месте устан	148.32	
Давление до, бар	6.82	
Давление после, бар	4.02	
Регулируемый перепад дав		
🗆 Клапан		
Тип клапана	VFG 2	
Код клапана	065B2393	
Ду клапана, мм	50	
Условная пропускная сп	32	
Рабочее давление клапа	16	
Материал клапана	Серый чугун EN-GJL-250 (GG-25)	
Коэффициент кавитации	0.5	
 Регулирующий блок 		
Тип регулирующего блока	AFD	
Код регулирующего блока	003G1002	
Нижняя настройка, бар	1	
Верхняя настройка, бар	6	
Текущая настройка, бар	4.02	
🗆 Импульсная трубка		
Тип импульсной трубки	AF	
Код импульсной трубки	003G1391	
Количество	1	Y

Рисунок 21.21. Результат подбора регуляторов

21.2.7. Справочная информация по полям регуляторов Danfoss

В результате обновления (добавления) полей, в базу данных добавляются следующая информация:

Имя поля	Пользовательское на- именование поля	Описание
DanDy	Ду трубы, мм	Условный диаметр прохода трубы
DanT	Температура в месте установки, °С	Температура теплоносителя в месте уста- новки шайбы (регулятора)
DanP1	Давление до, бар	Давление до клапана
DanP2	Давление после, бар	Давление после клапана
DandP	Регулируемый перепад давлений, бар	Поддерживаемый регулятором перепад давления (только для РПД)
DanKlType	Тип клапана	Тип клапана по классификации Danfoss
DanKlCode	Код клапана	Код регулирующего клапана, используе- мый для заказа у Danfoss или партнеров
DanKlDy	Ду клапана, мм	Условный диаметр прохода клапана
DanKlKvs	Условная пропускная способность, м3/ч	Условная пропускная способность клапана
DanK1Py	Рабочее давление кла- пана, бар	Наибольшее избыточное рабочее давле- ние при температуре рабочей среды 20 °С, при котором обеспечивается заданный срок службы соединений трубопроводов и арматуры,имеющих определенные разме- ры, обоснованные расчетом на прочность при выбранных материалах и характери- стиках прочности их при температуре 20 °С.
DanKlMat	Материал клапана	Материал корпуса клапана
DanK1Z	Коэффициент кавита- ции	Z- конструктивная характеристика клапа- на, используется при определении макси- мальных потерь давления на элементе.
DanRbType	Тип регулирующего блока	В зависимости от типа регулятора устанав- ливаются различные управляющие блоки:
		АГД- регулятор «после сеоя»
DanRbCode	Код регулирующего блока	Код регулирующего блока, используемый для заказа у Danfoss или партнеров
DanRbPmin	Нижняя настройка, бар	Нижний предел диапазона настройки регу- лирующего блока
DanRbPmax	Верхняя настройка, бар	Верхний предел диапазона настройки ре- гулирующего блока
DanRbP	Текущая настройка, бар	Текущая требуемая настройка регулятора
DanItType	Тип импульсной труб- ки	Тип импульсной трубки для комплектации регулятора расхода (давления)
DanItCode	Код импульсной труб- ки	Код импульсной трубки, используемый для заказа у Danfoss или партнеров

Имя поля	Пользовательское на- именование поля	Описание
DanItNum	Количество	Количество единиц для заказа

Глава 22. Отображение семантической информации на карте

Для удобства анализа результатов расчета можно выводить атрибутивные данные по объектам на карту. Одновременно на карту можно выводить надписи по всем объектам, для каждого типа по своему шаблону. Надпись может быть по-разному расположена относительно объекта, сориентирована под произвольным углом и иметь различные стили.

(i) Примечание

Надписи (бирки) обновляются автоматически, при обновлении значений в базе данных и карты.

В надписи по одному объекту могут участвовать значения разных его полей, которые можно выводить в одну или несколько строк, сопровождая каждое из полей своим шрифтом, цветом, префиксом и постфиксом. Можно выводить надписи по всем объектам, для каждого типа по своему варианту. Также имеется возможность одновременно подключать к каждому типу объектов слоя сразу несколько вариантов надписей.

Рисунок 22.1. Пример использования бирок для тепловой сети

(i) Примечание

Подробнее о работе в редакторе можно узнать в справочном пособии по работе с ГИС Zulu в разделе «Вывод семантических данных на карту».

Видеоурок по созданию надписей для потребителей (с рамкой) можно посмотреть по следующей ссылке: <u>http://politerm.com.ru/video-tutorials/</u> <u>MapLabelCreatePotr.htm</u> Видеоурок по созданию надписей для участков (вдоль линии) можно посмотреть по следующей ссылке: <u>http://politerm.com.ru/video-tutorials/</u> <u>MapLabelCreateUch.htm</u>

Глава 23. Тематическая раскраска

Информация, внесенная в семантические базы данных, а также полученная в результате расчетов, может использоваться для тематической раскраски сети (изменения внешнего вида объектов). Раскраска позволяет проанализировать результаты расчета, а также наглядно выделить определенные объекты на карте.

Раскраску сети можно произвести двумя способами:

- 1. Окраска с помощью встроенных фильтров- позволяет окрасить тепловую сеть с помощью встроенных тематических фильтров после проведения наладочного или поверочного расчета в зависимости от:
 - температуры теплоносителя в подающем трубопроводе;
 - температуры теплоносителя в обратном трубопроводе;
 - скорости движения воды в трубопроводе;
 - влияния источников на сеть (если количество источников больше 1);
 - времени прохождения теплоносителя от источника до узла;
 - величины напора в подающем трубопроводе;
 - величины располагаемого напора;
 - величины удельных линейных потерь напора.
- 2. Раскраска с помощью собственного фильтра- позволяет окрасить любые объекты сети с помощью самостоятельно созданного нового тематического фильтра. Например, задать цвет всем трубопроводам с подземной бесканальной прокладкой- желтый, подземной канальной прокладкой- красный, подвальной прокладкой- голубой, а также задать стиль и толщину линии.

С помощью тематической окраски можно:

- Выделить цветом магистральные и квартальные сети;
- Выделить цветом тепловые сети в зависимости от их владельца;
- Выделить цветом участки с разным видом прокладки или типом изоляции.

Смотрите также:

- Запуск раскраски с помощью встроенных фильтров (<u>Раздел 23.1.1, «Запуск раскрас-ки»</u>);
- настройки встроенных фильтров (<u>Раздел 23.1.2, «Настройки раскраски»</u>);
- создание нового тематического файла (<u>Раздел 23.2.1, «Создание нового тематиче-</u> ского файла»);
- редактирование тематического файла (<u>Раздел 23.2.2</u>, «<u>Редактирование тематическо-</u><u>го файла</u>»);

- подключение\отключение тематической окраски (<u>Раздел 23.2.3, «Подключение те-</u>матической окраски»);
- обновление тематической окраски (<u>Раздел 23.2.4</u>, «Обновление тематической окраски»);
- пример создания тематического фильтра (<u>Раздел 23.2.5</u>, «<u>Пример создания темати-</u> ческого фильтра»).

23.1. Раскраска с помощью встроенных фильтров

23.1.1. Запуск раскраски

Для того чтобы раскрасить сеть нужно:

1. После успешного проведения расчета, в окне Теплогидравлические расчеты в строке Раскраска нажать кнопку ▼. В выпавшем меню выбрать параметр, в зависимости от которого нужно произвести раскраску сети. (см. <u>Рисунок 23.1, «Раскраска с по-</u> <u>мощью встроенных фильтров»</u>)

Рисунок 23.1. Раскраска с помощью встроенных фильтров

2. После выбора параметра левой клавишей мыши, сеть окрасится в соответствии с заданными настройками (см. <u>Рисунок 23.2, «Окраска сети с помощью встроенных</u> <u>фильтров»</u>.) (Подробнее <u>Раздел 23.1.2, «Настройки раскраски»</u>).

Важно

Т

Окрасить сеть с помощью встроенных фильтров можно только после успешного проведения наладочного и поверочного расчетов.

Рисунок 23.2. Окраска сети с помощью встроенных фильтров

23.1.2. Настройки раскраски

Для того чтобы настроить тематический фильтр раскраски сети нужно:

- Выбрать команду главного меню Задачи | ZuluThermo или нажать кнопку инструментов;
- 2. Нажать кнопку Слой... и выбрать слой рассчитываемой тепловой сети;
- 3. Нажать кнопку Настройки;
- 4. Выбрать закладку Раскраска, (см. Рисунок 23.3, «Настройки раскраски»);
- 5. Выбрать тип настраиваемого параметра, нажав на соответствующую кнопку, например Температура трубопровода.

Тепловые потери	и Поте	и напора Теплоноситель		тель	Утечки	
Протокол расчета	Раскраска	FBC	Исхо	дные данные	Надежно	сть Назр
Температура под	ающего тр-да	H	Напор в	з подающем тр	-де	
Температура обр	ратного тр-да		Напор	в обратном тр-	де	
Скорость тепл	юносителя	Располагаемый напор		p		
Время движения от источника		Удельные потери				
Длина пути от	источника					

6. В появившемся окне задать значения параметров T2, (T1 заполняется автоматически) и указать соответствующий этому диапазону значений цвет окраски, (см. <u>Ри-</u> <u>сунок 23.4, «Настройка цветов для окраски»</u>).

Рисунок 23.4. Настройка цветов для окраски

Кнопка Добавить служит для добавления пункта в конец списка. Для того чтобы вставить строчку перед определенным полем, необходимо выделить это поле, и нажать кнопку Вставить, перед выделенным полем появится новая строка;

7. Нажать кнопку ОК для сохранения настроек.

23.2. Раскраска с помощью собственного фильтра

23.2.1. Создание нового тематического файла

Программа предусматривает возможность создания своего собственного фильтра по окраске объектов сети в зависимости от любого параметра семантической базы данных этих объектов. Создать, записать и отредактировать тематический фильтр можно в редакторе фильтров. Для вызова редактора следует выбрать пункт меню системы Карта/Тема/Редактор фильтра. На экране появится диалог редактора.

Зададим тематическую раскраску для участков, длина которых больше и меньше 50 метров.

Сначала необходимо создать тематический фильтр, для этого следует:

- 1. В меню Карта выбрать команду Тема|Редактор фильтра;
- 2. Нажать кнопку Слой, и в появившемся окне выбора файла указать слой тепловой сети;
- 3. В строке Шаблон ввести имя шаблона. (Например, Окраска по длине, см. <u>Ри-</u>сунок 23.5, «Создание тематического фильтра»);

- 4. Из выпадающего списка База выбрать базу данных Участки;
- 5. В строке Имя задать название первого условия. (Например, Длина меньше 50 метров).

В разделе набора условий в строке Длина участка, м ввести: <50;

(i) Примечание

Синтаксис условий запроса аналогичен синтаксису в окне запросов по семантической базе данных.

6. Указать тип объекта, выбрав вкладку Линейные.

В разделе Линии задать цвет, стиль и толщину линий трубопровода. (см. <u>Рисунок 23.5</u>, «Создание тематического фильтра»).

	Тематиче	ский фи	льтр	? >	
Слой:	Тепловая сеть			🔄 Слой	
Шаблон:	Окраска по длине		✓ ·1 ×	对 Открыты	
Условие					
Имя:	Длина менее 50 метров		1 из 1 🔹 🕨	Conpanying	
База:	Участки 🗸	Запрос:	Основной	, 	
Hower	CTOULAR D				
Балансо	пержатель			Каралария	
Наимено	рание начала участка			> Вниз	
Наимено	рвание конца участка				
Длина у	настка, м	<50		📑 Вставить	
Внутрен	ний диаметр подающего трубопрово			😽 Члалить	
Внутрен	ний диаметр обратного трубопровод			Одалите	
Сумма к	сэф. местных сопротивлений под. тр				
				_ Счистить	
Местные	сопротивления под тр-да			Очистить	
Местные Площар	а сопротивления под тр-да ные Линейные Символьные			•	
Местныя Площар	а сопротивления пол. тр-ла. ные Линейные Символьные				
Местные Площар Цвет:	а сопротивления пол тр-ла ные Линейные Символьные			Невидимый объект	
Местные Площар Цвет: Стиль:	а сопротивления пол тр-ла ные Линейные Символьные			Невидимый объект Невидимая надпис	
Местныя Площар Цвет: Стиль:	а сопротивления пол тр-ла ные Линейные Символьные (не менять) у			 Невидимый объект Невидимая надпис 	
Местныя Площар Цвет: Стиль: Толщи	а сопротивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: -1 -			 Невидимый объект Невидимая надпис 	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопротивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: 10			 Невидимый объект Невидимая надпис 	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопостивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: 1÷			Невидимый объект Невидимая надпис	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопротивления пол трад ные Линейные Символьные (не менять) v на на экране: 1 - на при печати: 1 -			Очистить Невидимый объект Невидимая надпис	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопротивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: -1 ÷			 Невидимый объект Невидимая надпис 	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопротивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: 1 ¢ на при печати: 1 ¢			 Очистить Невидимый объект Невидимая надпис 	
Местныя Площар Цвет: Стиль: Толщи Толщи	а сопротивления пол тр-ла ные Линейные Символьные (не менять) v на на экране: 1 ¢ на при печати: 1 ¢			 Невидимый объект Невидимая надпис 	
Местныя Площад Цвет: Стиль: Толщи Толщи	а сопостивления пол трад ные Линейные Символьные (не менять) v на на экране: 1 - на при печати: 1 -			 Очистить Невидимый объект Невидимая надпис Справка 	

Рисунок 23.5. Создание тематического фильтра

- 7. Для ввода следующего запроса нажать стрелку 🗈 в разделе 1 из 1 💶;
- 8. В строке Имя задать название второго условия. (см. <u>Рисунок 23.6, «Создание тема-</u> <u>тического фильтра, 2-ое условие»</u>);
- 9. В строке Длина участка, м ввести: >50. (см. <u>Рисунок 23.6, «Создание тематического</u> <u>фильтра, 2-ое условие»</u>);
- 10.В разделе Линии задать стиль, цвет и толщину трубопровода;
- 11.Сохранить шаблон (кнопка Сохранить).

	Темати	еский фи	льтр	? ×
Слой:	Тепловая сеть			🔄 Слой
Шаблон:	Окраска по длине		✓ -1 ×	💕 Открыты
Условие				🞑 Сохранить
Имя:	Длина более 50 метров		2 из 2 🔹 🕨	
База:	Участки	✓ 3anpoc:	Основной	
Номер и	сточника			
Балансо	держатель			C DOOPA
Наимено	вание начала участка			> Вниз
Наимено	вание конца участка			
Длина уч	астка, м	>50		Вставить
Внутренн	ний диаметр подающего трубопрово.			
Внутренн	ний диаметр обратного трубопровод.			Эдалить
Сумма к	сэф. местных сопротивлений под. тр	L		📫 Очистить
Местные	сопротивления под тр-да			V
Площад	ные Линейные Символьные			74
Площад Цвет:	ные Линейные Символьные			Невидимый объект
Площад Цвет: Стиль:	ные Линейные Символьные		[Невидимый объект Невидимая надписа
Площад Цвет: Стиль: Толщин	ные Линейные Символьные (не менять) v на на экране: 1 •		 [[Невидимый объект Невидимая надписа
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷			 Невидимый объект Невидимая надписа
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷		[Невидимый объект Невидимая надписа
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷			∎ Невидимый объект ∎ Невидимая надписа
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1÷ на при печати: 1÷			 Невидимый объект Невидимая надпись
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷			 Невидимый объект Невидимая надпись
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷			 Невидимый объект Невидимая надпись Мали надпись Оправка
Площад Цвет: Стиль: Толщин Толщин	ные Линейные Символьные (не менять) v на на экране: 1 ÷ на при печати: 1 ÷			 Невидимый объект Невидимая надписа Невидимая кадписа Справка

Рисунок 23.6. Создание тематического фильтра, 2-ое условие

Теперь на основе тематического фильтра создаётся тематический файл:

1. В меню Карта выбрать пункт Тема|Создать.

	Создание тематической раскраски	×
Слой:	Тепловая сеть	~
Фильтр:	Окраска по длине	·
Тема:	-1 Окраска по длине	~
OK	Отмена Справка 🔽 Подключить к к	арте

- 2. В выпадающем списке Слой нажать на стрелку (-) и выбрать слой тепловой сети;
- 3. В строке Фильтр нажать стрелку **▼** и выбрать фильтр, созданный на предыдущем этапе (Окраска по длине);
- 4. В строке Тема стереть надпись <Новая> и написать пользовательское название темы, например, также Окраска по длине;
- 5. Отметить опцию Подключить к карте, нажать кнопку ОК. На экране отобразится созданная тематическая раскраска.

23.2.2. Редактирование тематического файла

Для редактирования тематической окраски надо:

- 1. В меню Карта выбрать команду Тема/Редактор фильтра;
- 2. Нажать на кнопку Слой, и в появившемся окне выбора файла указать слой тепловой сети;
- 3. В строке Шаблон выбрать имя шаблона, который нужно отредактировать (Например, окраска по сети);
- 4. Изменить необходимые параметры;
- 5. Нажать кнопку ОК для сохранения изменений.

После редактирования тематического фильтра, тематический файл надо обновить. Как это сделать <u>Раздел 23.2.3, «Подключение тематической окраски»</u>

23.2.3. Подключение тематической окраски

Для подключения тематической окраски необходимо:

- 1. Выбрать пункт меню Карта Тема Подключить. Откроется окно Тематические раскраски, (Рисунок 23.7, «Подключение тематической раскраски»);
- 2. Дважды щелкнуть левой кнопкой мыши по раскраске. Двойной щелчок устанавливает (снимает) галочку с раскраски. Галочка означает, что окраска будет подключена к карте;
- 3. После выбора необходимой раскраски и её подключения (отключения) нажмите кнопку ОК для сохранения.

Рисунок 23.7. Подключение тематической раскраски

23.2.4. Обновление тематической окраски

После расчета или после изменения исходных данных необходимо окрасить сеть повторно, для этого нужно:

- 1. Выбрать пункт меню Карта Тема Подключить. Откроется окно Тематические раскраски;
- 2. Выделить раскраску левой кнопкой мыши;
- 3. Нажать кнопку Обновить;
- 4. Нажать кнопку ОК для закрытия окна.

Рисунок 23.8. Обновление тематической окраски

23.2.5. Пример создания тематического фильтра

Создать, записать и отредактировать тематический фильтр можно в редакторе фильтров. Для вызова редактора следует выбрать пункт меню системы Карта|Тема|Редактор фильтра. На экране появится диалог редактора.

Зададим тематическую раскраску для потребителей, у которых расчетная нагрузка на отопление меньше 0.2 Гкал/ч, для этого надо следует сначала создать тематический фильтр:

- 1. В меню Карта выбрать команду Тема|Редактор фильтра;
- 2. Нажать кнопку Слой и в появившемся окне выбрать слой тепловой сети;
- 3. В строке Шаблон ввести: Нагрузка меньше 0.2;
- 4. В строке Условие задать название условия, например Нагр. меньше 0.2;
- 5. В строке База выбрать объект сети, в данном случае Потребитель;
- 6. В разделе набора условий в строке Расчетная нагрузка на отопление, Гкал/ч ввести: <0.2;
- 7. Выбрать снизу вкладку Символьные;

- Нажать кнопку Новый символ и нарисовать символ в редакторе. Более подробное описание работы в графическом редакторе символов можно рассмотреть в справочном пособии по работе с ГИС Zulu в разделе Работа с векторными слоями Редактор структуры слоя Редактор символов;
- 9. Выбрать нарисованный символ в выпадающем списке;
- 10.В строке Размер установить значение 40.

		Te	матиче	ский фил	льтр	? ×
Слой:	Тепловая сеть					🛃 Слой
Шаблон:	Нагрузка меньц	ue 0.2			v 2	🗙 💕 Открыты
Условие						
Има	Нагризка на ото	пление мен	ее 0.2 Гка	an/u	1из1 🔳	Сохранить
,	prorpgond na oro		00 0.2114	1	J]]
База:	Потребитель		~	Запрос:	Основной	1
Адрес уз	ла ввода					A Beenx
Наименс	вание узла					4 Doopii
Номер и	сточника					> Вниз
Геодези	еская отметка, м					P Borraeum
Высота з	здания потребите:	19, M				Вставить
Номер с:	кемы подключени:	я потребите	еля 			📑 Удалить
Расчетна	ая темп. сет. воды	на входе в	потреб	20.2		
Расчетна	яя нагрузка на отс	пление, г ка поление, г ка	алич Чарайн	<0.2		🗸 🛄 Очистить
Площад	ные Линейные	Символьн	ые			
						Неридимый объект.
			Размер	-1		
		~	 Macu 	лабироваті	ь	Невидимая надпись
			He us	e duuue atte	больше 1:1	
			- no ge	on point and a role	000000000000000000000000000000000000000	
			Нов	ый символ		
			Измен	ить символ	n	
						U Справка
						3акрыты

Рисунок 23.9. Пример создания тематического фильтра

11.Сохранить шаблон (кнопка Сохранить);

12.Закрыть окно создания тематического фильтра (кнопка Закрыть).

Теперь следует на основе выбранного фильтра **создать тематический файл**, для этого надо:

- 1. В меню Карта выбрать пункт Тема|Создать;
- 2. В выпадающем списке Слой нажать на стрелку (-) и выбрать слой Пример тепловой сети;
- 3. В строке Фильтр нажать на стрелку (.) и выбрать файл фильтра (Нагрузка меньше 0.2);
- 4. В строке Тема стереть надпись <Новая>и ввести пользовательское название темы, например Потребители;
- 5. Включить опцию Подключить к слою.

Слой:	Тепловая сеть	×	
Фильтр:	Рильтр: Нагрузка меньше 0.2		
Тема:	Тема: -1 Нагрузка меньше 0.2		

Рисунок 23.10. Пример создания тематического файла

6. Нажать кнопку ОК, после чего на экране отобразится тематическая раскраска для потребителей. (Рисунок 23.11, «Пример подключенной тематической раскраски»).

Рисунок 23.11. Пример подключенной тематической раскраски

Глава 24. Таблицы баз данных элементов тепловой сети

В таблицах используются следующие сокращенные обозначения

Поле	Значение	Обозначе- ние
Тип дан-	Исходные данные;	И
ных:	Обязательные;	0
	Необязательные, информативные;	Н
	Результаты расчета.	Р
Тип поля	Числовой	Ч
	Текстовый	Т
	Дата	Д

Примечание

(i)

Например **ИН**- означает что данное поле содержит исходную информацию, которая задается пользователем, данная информация не является обязательной для проведения расчетов, а является дополнительной информацией для пользователя. **ИО**- означает что данное поле содержит исходную информацию, которая задается пользователем и является обязательной для проведения расчетов. Помимо этого могут встречаются следующие обозначения: **ИО***- означает, что данное поле должно быть обязательно заполнено только для проведения поверочного расчета. **ИО****- означает что данное поле должно быть обязательно заполнено только для проведения расчета с учетом тепловых потерь. **ИО*****- означает что данное поле должно быть обязательно заполнено только для проведения расчета.

24.1. Источник тепловой сети

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Name_pred	Наименование предприя- тия	Задается пользователем, например МУП Тепло- вые сети	ИН
2	Name	Наименование источника	Задается пользователем, например Котельная Северная	ИН
3	Nist	Номер источника	Задается пользователем цифрой, например 1, 2, 3 и т.д. по количеству ко- тельных на предприятии. После выполнения расче-	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			тов присвоенный номер источника будет прописан у всех объектов, которые будут запитаны от данной котельной	
4	H_geo	Геодезическая отметка, м	Задается отметка оси (вер- ха) трубы, выходящей из данного источника. Она может автоматически быть считана со слоя ре- льефа (<u>Раздел 19.3, «Авто-</u> матическое занесение гео- дезических отметок объ- ектов сети со слоя релье- фа»).	ИО
5	T1_r	Расчетная температура в подающем трубопрово- де,°С	Задается расчетное значе- ние температуры сетевой воды в подающем трубо- проводе, на которое было выполнено проектирова- ние системы централизо- ванного теплоснабжения, например 150, 130, 110 или 95 °С	ИО
6	Thz_r	Расчетная температура холодной воды,°С	Задается расчетная температура холодной водопро- водной воды, например 5, 15 °C. Максималь- ное значение 20°C. Ми- нимальное значение 1°C.	ИО
7	Tnv_r	Расчетная температура наружного воздуха,°С	Задается расчетное значе- ние температуры наруж- ного воздуха (например -25, -30, -50 и т.д. °С), которое прини- мается в соответствии со СНиП. Минимальное зна- чение -60 °С.	ИО
8	T1_t	Текущая температура во- ды в подающем тру-де,°С	Задается текущая температура воды в подающем трубопроводе (на выходе из источника), например 70, 100, 120, 150 и т.д. °С. Данное значение должно обязательно задаваться при выполнении поверочного расчета.	ИО*

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
9	Tnv_t	Текущая температура на- ружного воздуха,°С	Задается текущая температура наружного возду- ха, например +8, -5, -10, -20 и т.д. °С. Дан- ное значение должно обя- зательно задаваться при выполнении поверочного расчета.	ИО*
10	H_ras	Расчетный располаг. напор на выходе из источника, м	Задается расчетный рас- полагаемый напор на вы- ходе из источника (раз- ность между давлением в подающем и давлением в обратном трубопрово- дах), например 30, 40, 70, 100 м. При выпол- нении наладки расчетный располагаемый напор на выходе из источника мож- но задать заведомо очень маленьким 5–10 м, в этом случае располагае- мый напор на источнике будет подобран автомати- чески. Максимальное зна- чение 250 м. Минималь- ное значение 1 м	ИО
11	H_obr	Расчетный напор в обратн. тр-де на источни- ке, м	Задается расчетное значе- ние напора в обратном трубопроводе на источни- ке, например 20, 50, 100 и т.д. метров. Рас- четный напор в обратном трубопроводе задается с учетом геодезической от- метки расположения ис- точника, например если геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, то расчетный напор в об- ратном трубопроводе на источнике равен 50 + 20 = 70 метров. Минимальное значение 0 м.	ИО
12	Mode	Режим работы источника	Выбирается из списка ре- жим работы источника.	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			Задается пользователем	
			режим работы источника:	
			0 или Пусто- источ-	
			ник будет определяющим	
			при работе на сеть. В	
			этом случае данный ис-	
			точник будет характери-	
			зоваться расчетным рас-	
			полагаемым напором, рас-	
			четным напором в обрат-	
			ном трубопроводе и мак-	
			симальной подпиткой се-	
			ти, которую он может	
			обеспечить.	
			1- источник не имеет сво-	
			ей подпитки, располагае-	
			мый напор на этом источ-	
			нике поддерживается по-	
			стоянным, а напор в об-	
			ратном трубопроводе за-	
			висит от режима работы	
			сети и определяющего ис-	
			точника;	
			2- источник не имеет сво-	
			ей подпитки, но поддер-	
			живает напор в обратном	
			трубопроводе на задан-	
			ном уровне, при этом рас-	
			полагаемый напор меня-	
			ется в зависимости от ре-	
			жима работы сети и опре-	
			деляющего источника;	
			3- источник, имеющий	
			подпитку с заданным рас-	
			четным располагаемым	
			напором и расчетным на-	
			пором в обратном трубо-	
			проводе.	
			4- источник, имеющий	
			фиксированную подпит-	
			ку с заданным расчетным	
			располагаемым напором.	
			Напор в обратном трубо-	
			проводе на источнике бу-	
			дет зависеть от величи-	
			ны этой подпитки, режима	
				I.

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			работы системы и сосед-	
			них источников включен-	
			ных в сеть	
13	Glimit	Максимальный расход на	Задается максимальный	ИО
		подпитку, т/ч	расход воды на подпитку,	
			например 20, 40 т/ч. Ис-	
			пользуется только в том	
			случае, когда режим ра-	
			боты источника Подпит-	
			ка ограничена за-	
			данным значением	
14	Qmax	Установленная тепловая	Данное поле используется	ИО*
		мощность, Гкал	для расчета аварийной си-	
			туации, когда подключен-	
			ная нагрузка больше уста-	
			новленной на источнике.	
			При достижении предель-	
			ного значения подклю-	
			ченной нагрузки в про-	
			цессе расчета, будет со-	
			ответственно снижена те-	
			кущая температура на вы-	
			ходе из источника. В	
			остальных расчетах сле-	
			дует оставлять пустым,	
			тогда установленная теп-	
			ловая мощность будет	
			нагрузке Как использо-	
			вать данное поле рас-	
			сказывается в слелующем	
			разделе Раздел 11.4, «Рас-	
			чет при нехватке установ-	
			ленной мощности на ис-	
			<u>точнике»</u> .	
15	Ht ras	Текуший располаг. напор	В результате расче-	Р
	_	на выходе из источника. м	та определяется текуший	
			располагаемый напор на	
			выходе из источника, в	
			зависимости от режима	
			работы источника может	
			быть определено новое	
			значение данной величи-	
			ны, в сети с несколькими	
			источниками.	
16	Ht_pod	Напор в подающем тр-де,	В результате расчета	Р
		M	определяется текущий на-	
			пор в обратном трубопро-	
			воде на источнике, в зави-	

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			симости от режима рабо-	
			ты источника может оыть	
			определено новое значе-	
			ние данной величины, в	
			сети с несколькими источ-	
1.5	D. 1			D
17	Pt_pod	Давление в подающем тр- де, м	Определяется в результа- те расчета	Р
18	Ht_obr	Текущий напор в обратн. тр-де на источнике, м	Определяется в результа- те расчета	Р
19	Pt_obr	Давление в обратном тр- де, м	Определяется в результа- те расчета	Р
20	Period	Продолжительность рабо-	Выбирается из списка	ИО**
20	I CHOU	ты системы теплоснабже-	нисло насов работы систе-	no
		ния (1-2)	мы теплоснабжения в гол:	
		(1 <i>2</i>)	менее 5000 или более 5000	
			часов	
			1- менее 5000 часов	
			2- более 5000 часов	
21	Tsg_pod	Среднегодовая темпера-	Задается среднегодовая	ИО**
		тура воды в под. тр-де,°С	температура воды в под.	
			тр-де, например 75 °С	
22	Tsg_obr	Среднегодовая темпера-	Задается среднегодовая	ИО**
		тура воды в обр. тр-де,°С	температура воды в обр.	
			тр-де, например 50 °С	
23	Tsg grunt	Среднегодовая темпера-	Задается среднегодовая	ИО**
	0_0	тура грунта, °С	температура грунта, на-	
			пример +5 °С	
24	Tsg nv	Среднегодовая темпера-	Залается среднегодовая	ИО**
	8	тура наружного возду-	температура наружного	
		xa,°C	воздуха, например +3 °С	
25	Tsg podval	Среднегодовая темпера-	Залается среднегодовая	ИО**
25	135_pouvui	тура возлуха в полва-	температура возлуха в	no
		лах.°С	полвалах, например +10	
		,	°C	
26	Torunt	Текушая температура	Залается текушая темпе-	ИО**
20	1 grunt	грунта.°С	ратура грунта, например	110
		- F J, -	+2 °C	
27	Tpodyal	Текушая температура воз-	Запается текущая темпе-	ИО**
21	Tpouvai	текущая температура воз-	ратура вознуха в полва-	no
			лах. например +12 °C	
20		Deexemine a version of		D
20		гасчетная нагрузка на	в результате расчета	r
			пределяется расчетная	
			пагрузка на отопление,	

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			как сумма всех расчет- ных нагрузок на отопле- ние подключенных к дан- ному источнику;	
29	Qsv_r	Расчетная нагрузка на вентиляцию, Гкал/ч	В результате расчета определяется расчетная нагрузка на вентиляцию, как сумма всех расчетных нагрузок на вентиляцию подключенных к данному источнику;	Р
30	Qgv_r	Расчетная нагрузка на ГВС, Гкал/ч	В результате расчета определяется расчетная нагрузка на горячее во- доснабжение, как сумма всех расчетных нагрузок на системы горячего во- доснабжения подключен- ных к данному источнику;	Ρ
31	Qo_t	Текущая нагрузка на отопление, Гкал/ч	В результате расчета определяется текущая на- грузка на отопление, как сумма всех текущих на- грузок на отопление под- ключенных к данному ис- точнику;	Ρ
32	Qsv_t	Текущая нагрузка на вен- тиляцию, Гкал/ч	В результате расчета определяется текущая на- грузка на вентиляцию, как сумма всех текущих нагрузок на вентиляцию подключенных к данному источнику;	Р
33	Qgv_t	Текущая нагрузка на ГВС, Гкал/ч	В результате расчета определяется текущая на- грузка на горячее во- доснабжение, как сумма всех текущих нагрузок на системы горячего во- доснабжения подключен- ных к данному источнику;	Р
34	Qsum	Суммарная тепловая на- грузка, Гкал/ч	В результате расчета определяется суммарная тепловая нагрузка;	Р
35	Tpod	Температура на выходе из источника,°С	В результате расчета определяется температура на выходе из источни- ка. Например, она может	Р

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			быть меньше расчетной, при условии, что уста- новленная тепловая мощ- ность меньше подключен- ной нагрузки.	
36	T2_t	Текущая температура во- ды в обратном тр-де,°С	В результате расчета определяется температура воды поступающая по об- ратном трубопроводу, из тепловой сети к источни- ку.	Р
37	Gso	Расход сетевой воды на СО, т/ч	В результате расчета определяется расход сете- вой воды на систему отоп- ления;	Р
38	Gsv	Расход сетевой воды на СВ, т/ч	В результате расчета определяется расход сете- вой воды на систему вен- тиляции;	Р
39	Ggv	Расход сетевой воды на откр. ГВС, т/ч	В результате расчета определяется расход сете- вой воды на систему горя- чего водоснабжения;	Р
40	Gsum_pod	Суммарный расход сете- вой воды в под.тр., т/ч	Определяется в результа- те расчета	Р
41	Gut_pot	Расход воды на утечку из сис.теплопотреб., т/ч	В результате расчета определяется расход воды на утечки из систем тепло- потребления;	Р
42	Gpodpit	Расход воды на подпитку, т/ч	В результате расчета определяется расход воды на подпитку;	Р
43	Gut_pod	Расход сетевой воды на утечку из под.тр., т/ч	В результате расчета определяется расход сете- вой воды на утечки из по- дающих трубопроводов;	Р
44	Gut_obr	Расход сетевой воды на утечку из обр.тр., т/ч	В результате расчета определяется расход сете- вой воды на утечки из об- ратных трубопроводов;	Р
45	Qpot_ts	Тепловые потери в тепло- вых сетях, Гкал/ч	В результате расчета определяется величина тепловых потерь в тепло- вых сетях.	Р
46	Tb	Давление вскипания, м	В результате расчета определяется давление в	Р

№	Имя поля	Наименование поля	Информация, записыва- Тип емая в поле
			каждом объекте тепловой сети, при котором может произойти вскипание теп- лоносителя (кроме участ- ков);
47	Hstat	Статический напор, м	В результате расче- Р та определяется значе- ние статического напора в каждом объекте тепловой сети (кроме участков).

24.2. Узел тепловой сети

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Name	Наименование узла	Задается пользователем наименование объекта, например ТК-1 или УТ-2	ИН
2	Nist	Номер источника	После выполнения расче- тов в данном поле запи- сывается цифра, например 1, 2, 3, и т.д. соответству- ющая номеру источника от которого запитывается данный узел тепловой се- ти	P
3	H_geo	Геодезическая отметка, м	Задается отметка оси (вер- ха) трубы, на которой установлен данный узел. Она может автоматически быть считана со слоя ре- льефа (<u>Раздел 19.3, «Авто-</u> матическое занесение гео- дезических отметок объ- ектов сети со слоя релье- фа»).	ИО
4	Gpod	Слив из подающего тру- бопровода, т/ч	Задается пользователем количество утечки из по- дающего трубопровода, например, 2, 3 т/ч. Дан- ный узел может устанав- ливаться в любом месте тепловой сети и позволяет имитировать режим ава- рии в подающем трубо- проводе	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
5	Gobr	Слив из обратного трубо- провода, т/ч	Задается пользователем количество утечки из об- ратного трубопровода, на- пример, 2, 3 т/ч. Дан- ный узел может устанав- ливаться в любом месте тепловой сети и позволяет имитировать режим ава- рии в обратном трубопро- воде, а также слив воды после системы отопления	ИО
6	H_ras	Располагаемый напор, м	Определяется в результа- те расчета	Р
7	H_pod	Напор в подающем трубо- проводе, м	Определяется в результа- те расчета	Р
8	H_obr	Напор в обратном трубо- проводе, м	Определяется в результа- те расчета	Р
9	Tpod	Температура воды в пода- ющем трубопроводе,°С	Определяется в результа- те расчета	Р
10	Tobr	Температура воды в об- ратном трубопроводе, °С	Определяется в результа- те расчета	Р
11	Ppod	Давление в подающем трубопроводе, м	Определяется в результа- те расчета	Р
12	Pobr	Давление в обратном тру- бопроводе, м	Определяется в результа- те расчета	Р
13	Time	Время прохождения воды от источника, мин	Определяется в результа- те расчета	Р
14	Dist	Путь, пройденный от ис- точника, м	Определяется в результа- те расчета	Р
15	ТЪ	Давление вскипания, м	Определяется в результа- те расчета	Р
16	Hstat	Статический напор, м	Определяется в результа- те расчета	Р
17	Hstat_out	Статический напор на вы- ходе, м	Определяется в результа- те расчета	Р

24.3. Потребитель

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
1	Adres	Адрес узла ввода	Задается пользователем, на-	ИН
			примерул. Воронежская д.33	

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
2	Name	Наименование узла	Задается наименование, на- пример жилой дом, шко- ла, и т.д.	ИН
3	Nist	Номер источника	После выполнения расчетов в данном поле записывает- ся цифра, например 1, 2, 3, и т.д. соответствующая но- меру источника от которого запитывается данный потре- битель	Ρ
4	H_geo	Геодезическая отметка, м	Задается геодезическая от- метка оси (верха) трубо- провода, на котором нахо- дится данный узел ввода. Она может автоматически быть считана со слоя релье- фа (<u>Раздел 19.3, «Автомати-</u> ческое занесение геодезиче- ских отметок объектов сети со слоя рельефа»).	ИО
5	Hzdan	Высота здания потребителя, м	Задается высота здания, ес- ли точной высоты здания не известно, можно принимать условно 3 метра на этаж	ИО
6	N_schem	Номер схемы подключения потребителя	Выбирается схема присо- единения узла ввода. Схе- мы приведены в приложе- нии Приложение А, Схемы подключения	ИО
7	T1_r	Расчетная темп. сет. воды на входе в потреб.,°С	Задается расчетное значе- ние температуры сетевой воды, на которое было вы- полнено проектирование си- стем отопления и вентиля- ции данного потребителя, например 150, 130, 105 или 95 °C	ИО
8	Qo_r	Расчетная нагрузка на отопление, Гкал/ч	Задается расчетная нагрузка на систему отопления. При отсутствии проектных дан- ных расчетные тепловые на- грузки на отопление могут быть определены по наруж- ному объему здания или по- верхности нагрева теплопо- требляющего оборудования. Нагрузка может быть зада- на как в Гкал/ч так и в MBт.	ИО

№	Имя поля	Наименование поля	Информация, записывае-	Тип
			Как изменить единицы из- мерений смотрите в разделе Раздел 9.11, «Настройка ис- пользуемых единиц измере- ния»	
9	Qsv_r	Расчетная нагрузка на вентиляцию, Гкал/ч	Задается пользователем по проектным данным в (Гкал/ ч). При отсутствии проект- ных данных расчетные теп- ловые нагрузки на венти- ляцию могут быть опреде- лены по наружному объе- му здания или поверхности нагрева теплопотребляюще- го оборудования. Нагрузка может быть задана как в Гкал/ч так и в МВт. Как изменить единицы измере- ний смотрите в разделе <u>Раз-</u> дел 9.11, «Настройка ис- пользуемых единиц измере- ния»	ИО
10	Qgv_sred	Расчетная нагрузка на ГВС, Гкал/ч	Задается пользователем по проектным данным в (Гкал/ ч). При отсутствии про- ектных данных расчетные тепловые нагрузки на го- рячее водоснабжение могут быть определены по количе- ству потребителей горячего водоснабжения, в соответ- ствии с указаниями СНиП. По-умолчанию нагрузка введенная пользователем принимается как средняя. Изменить её на максималь- ную возможно в настрой- ках расчета (Раздел 9.7, «На- стройка расчета ГВС»). Нагрузка может быть зада- на как в Гкал/ч так и в МВт. Как изменить единицы из- мерений смотрите в разделе Раздел 9.11, «Настройка ис- пользуемых единиц измере- ния»	ИО

N⁰	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
11	Njil	Число жителей	Задается количество жите- лей для данного узла ввода, для учета часовой неравно- мерности.	ИО
12	Kso	Коэффициент изменения на- грузки отопления	Задается пользователем в случае необходимости уве- личения нагрузки на отопле- ние по сравнению с расчет- ным значением, например, 1.1, 1.2 и т.д. В этом случае расчетное значение нагруз- ки на отопление будет уве- личено соответственно на 10 или 20%	ИО
13	Ksv	Коэффициент изменения на- грузки вентиляции	Задается пользователем в случае необходимости уве- личения нагрузки на венти- ляцию по сравнению с рас- четным значением, напри- мер, 1.1, 1.2 и т.д. В этом случае расчетное значение нагрузки на вентиляцию бу- дет увеличено соответствен- но на 10 или 20%	ИО
14	Kgv	Коэффициент изменения на- грузки ГВС	Задается пользователем в случае необходимости уве- личения нагрузки на ГВС по сравнению с расчетным зна- чением, например, 1.1, 1.2 и т.д. В этом случае расчетное среднее значение нагрузки на ГВС будет увеличено со- ответственно на 10 или 20%.	ИО
15	Kb	Балансовый коэффициент закр.ГВС	Используется при опреде- лении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Ба- лансовая нагрузка определя- ется как средняя нагрузка ГВС, умноженная на балан- совый коэффициент. Коэф- фициент позволяет пользо- вателю регулировать вели- чину нагрузки (и расхода) на которую производится на- ладка. Если значения поля не задано, значения коэффи- циента по умолчанию: 1.15	ИО

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
			для одноступенчатой схе- мы, 1.1 для двухступенчатой смешанной, 1.25 для двух- ступенчатой последователь- ной.	
16	Regul_G	Признак наличия регулято- ра на отопление	выбирается из списка нали- чие регулирующего устрой- ства на систему отопления.	ИО
			0 (или пусто)- без регулято- ра	
			1- регулятор расхода	
			2- регулятор отопления (по- годное регулирование)	
			3- регулятор давления в обратном	
17	Klapan_sv	Признак наличия регулиру- ющего клапана на СВ	Указывается из списка нали- чие регулирующего клапана на систему вентиляции.	ИО
			0 (или пусто)- без регулято- ра	
			1- установлен регулятор	
18	Regul_T	Признак наличия регулято- ра температуры	Выбирается из списка нали- чие регулирующего устрой- ства на систему ГВС.	ИО
			0 (или пусто)- без регулято- ра	
			1- регулятор температуры	
			2- отбор воды из подающего	
			3- отбор воды из обратного	
			4- при указании этой оп- ции, подбор циркуляцион- ной шайбы проводиться не будет	
19	T2_r	Расчетная темп. воды на вы- ходе из CO,°C	Задается расчетное значе- ние температуры теплоно- сителя на выходе из системы отопления, на которое было выполнено проектирование, обычно 70 °C	ИО
№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
----	----------	--	---	-----
20	T3_r	Расчетная темп. воды на входе в CO,°C	Задается расчетное значение температуры теплоносителя на входе в систему отопле- ния, на которое было выпол- нено проектирование, обыч- но 95 °C	ИО
21	Tvso_r	Расчетная темп. внутренне- го воздуха для CO,°C	Задается расчетное значение температуры воздуха внут- ри отапливаемых помеще- ний при проектировании си- стемы отопления, например 20, 18, 16 или 10 °C	ИО
22	Hso_r	Расчетный располагаемый напор в СО, м	Задается расчетное значе- ние располагаемого напо- ра (расчетное сопротивле- ние системы отопления, м) при проектирования систе- мы отопления, например 1 метр вод.ст. для элеватор- ных схем присоединения и 2, 3, 4 м вод.ст. и т.д. для на- сосных схем присоединения	ИО
23	Tvsv_r	Расчетная темп. внутренне- го воздуха для CB,°C	Задается расчетное значение температуры воздуха внут- ри отапливаемых помеще- ний при проектировании си- стемы вентиляции, напри- мер 20, 18, 16 или 10 °С	ИО
24	Tnsv_r	Расчетная темп. наружного воздуха для CB,°C	Задается расчетное значе- ние температуры наружного воздуха для проектирования системы вентиляции, напри- мер-20-15,-11 °С и т.д	ИО
25	Hsv_r	Расчетный располагаемый напор в СВ, м	Задается расчетное значение располагаемого напора (рас- четное сопротивление кало- рифера, м вод.ст.) при про- ектирования системы венти- ляции, например 0.5, 1.0, 1.5 м вод.ст.	ИО
26	Kcirc	Доля циркуляции от расхода на ГВС, %	Задается доля циркуляцион- ного расхода ГВС от средне- часового расхода или сред- ней нагрузки на ГВС в про- центах, например 10, 15, 20. Как это сделать смотрите на- стройки расчетов.	ИО

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
27	Hcirc	Потери напора в системе ГВС, м	Задается величина потери напора в системе горячего водоснабжения	ИО
28	Hpump_gvs	Напор насоса в контуре ГВС, м	Задается при необходимо- сти напор повысительного насоса в системе ГВС.	ИО
29	Tcirc	Температура воды в цирк. контуре,°С	Задается температура воды в циркуляционном контуре ГВС. Обычно на 5-10 °С ни- же чем температура воды на ГВС, например 55, 50 °С	ИО
30	Thv	Температура холодной во- ды,°С	Задается температура хо- лодной воды, например 5, 10 °C.	ИО
31	Tgv	Температура воды на ГВС, °С	Задается температура горя- чей воды, например 60, 65 °C.	ИО
32	Pmax_obr	Максимальное давление в обратном тр-де на СО, м	Задается максимально допу- стимое давление в обрат- ном трубопроводе на СО для конкретного потребите- ля. Если поле не задано то по умолчанию используется значение из настроек расче- тов.	ИО
33	Pmax_gvs	Максимальное давление на ГВС, м	Задается максимально допу- стимое давление в обрат- ном трубопроводе на ГВС для конкретного потребите- ля. Если поле не задано то по умолчанию используется значение из настроек расче- тов.	ИО
34	Thv_t	Текущая температура хо- лодной воды, °С	Используется для повероч- ного расчета для закрытой системы ГВС. Задается тем- пература холодной (водо- проводной) воды на входе 2 контура нижней ступени.	ИО
35	Nsec_so	Количество секций ТО на СО	Указывается количество секций теплообменного ап- парата на СО например 1, 2, 3 и т.д.	ИО
36	Hsec_so	Потери напора в 1-й секции ТО на СО, м	Указываются потери напора в одной секции ТО на СО, например 0.5, 1, 1.5 м вод.ст.	ИО

N⁰	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
37	Ngr_so	Количество параллельных групп ТО на СО	Указывается количество па- раллельных групп теплооб- менного аппарата на СО.	ИО
38	T1to_so	Расчетная темп. сет. воды на выходе из ТО	Расчетная темп. сетевой во- ды на выходе из ТО (вы- ход 2ого контура) на систе- му отопления задается поль- зователем, например 95 °С	ИО
39	T2r_obr	Расчетная темп. сет. воды на выходе из потребителя	Задается пользователем рас- четная темп. сет. воды на выходе из потребителя (вы- ход 1ого контура). Если на выходе из СО (по второму контуру) – 70, то эта темпе- ратура должна быть выше, чем 70, например 75 °C.	ИО
40	Tto_so	Температура воды на выхо- де из 2 контура ТО, °С	Определяется в результате расчета температура на вы- ходе 2 контура ТО	Р
41	Nel_r	Рекомендуемый номер эле- ватора	Рекомендуемый номер эле- ватора определяется в ре- зультате наладочного расче- та	Р
42	Dsop_r	Рекомендуемый диаметр сопла элеватора, мм	Рекомендуемый диаметр сопла элеватора определяет- ся в результате наладочного расчета	Р
43	U_calc	Расчетный коэффициент смешения	Значение расчетного коэф- фициента смешения опреде- ляется в результате наладоч- ного расчета	Р
44	U_fakt	Фактический коэффициент смешения	Значение фактического ко- эффициента смешения опре- деляется в результате пове- рочного расчета	Р
45	Nel_u	Номер установленного эле- ватора	Задается номер фактически установленного элеватора, например 1, 2, 3.	ИО*
46	Dsop_u	Диаметр установленного сопла элеватора, мм	Задается значение диаметра фактически установленного сопла элеватора, например 3, 5, 7 мм.	ИО*
47	T1_t	Температура сетевой воды в под. тр-де, °С	Определяется в результате расчета	Р
48	T2_t	Температура сетевой воды в обр. тр-де, °С	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
49	Gso	Расход сетевой воды на СО, т/ч	Определяется в результате расчета	Р
50	Gso_otn	Относительный расход во- ды на СО	Определяется в результате расчета относительный рас- ход воды на систему отоп- ления. (Отношение факти- ческого расхода к расчетно- му).	Р
51	Qso_otn	Относительное количество теплоты на СО	В результате расчета опре- деляется относительное ко- личество тепла на систему отопления (отношение теку- щей температуры внутрен- него воздуха к расчетной).	Р
52	T3so_t	Температура воды на входе в CO, °C	Температура воды на входе в систему отопления опре- деляется в результате расче- та	Р
53	T2so_t	Температура воды на выхо- де из CO, °C	Температура воды на вы- ходе из системы отопления определяется в результате расчета	Р
54	Tvso_t	Температура внутреннего воздуха CO, °C	Значение температуры внут- реннего воздуха определя- ется в результате расчета	Р
55	Dshb_so_pod	Диаметр шайбы на под. тр- де перед СО, мм	Значение диаметра шайбы на подающем трубопрово- де перед системой отопле- ния определяется в резуль- тате наладочного расчета	Р
56	Nshb_so_pod	Количество шайб на под. тр- де перед СО, шт	Количество шайб на подаю- щем трубопроводе перед си- стемой отопления определя- ется в результате наладоч- ного расчета	Р
57	Dshb_so_obr	Диаметр шайбы на обр. тр- де после СО, мм	Значение диаметра шайбы на обратном трубопроводе после системой отопления определяется в результате наладочного расчета	Р
58	Nshb_so_obr	Количество шайб на обр. тр- де после СО, шт	Количество шайб на обрат- ном трубопроводе после си- стемой отопления определя- ется в результате наладоч- ного расчета	Р

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
59	dHshb_so_pod	Потери напора на шайбе под.тр-да перед СО, м	Значение потерь напора на шайбе, установленной пе- ред СО (подающий трубо- провод) определяется в ре- зультате наладочного и по- верочного расчетов	Р
60	dHshb_so_obr	Потери напора на шайбе обр.тр-да после СО, м	Значение потерь напора на шайбе, установленной после СО (обратный трубопровод) определяется в результате наладочного и поверочного расчетов	Р
61	dHsop	Потери напора на сопле, м	Значение потерь напора на сопле элеватора определяет- ся в результате наладочного и поверочного расчетов	Р
62	Dshb_pod	Диаметр шайбы на вводе на под.тр-де, мм	Задается диаметр шайбы на вводе на подающем трубо- проводе	ИО*
63	Nshb_pod	Количество шайб на вводе на под. тр-де, шт	Задается количество шайб на вводе на подающем тру- бопроводе	ИО*
64	Dshb_obr	Диаметр шайбы на вводе на обр. тр-де, мм	Задается диаметр шайбы на вводе на обратном трубо- проводе	ИО*
65	Nshb_obr	Количество шайб на вводе на обр. тр-де, шт	Задается количество шайб на вводе на обратном трубо- проводе	ИО*
66	Gsv	Расход сетевой воды на CB, т/ч	Расход сетевой воды на си- стему вентиляции определя- ется в результате расчета	Р
67	Gsv_otn	Относительный расход во- ды на CB, т/ч	Относительный расход во- ды на систему вентиляции определяется в результате расчета	Р
68	T2sv_t	Темп. воды после системы вентиляции, °С	Температура воды после си- стемы вентиляции опреде- ляется в результате расчета	Р
69	Tvsv_t	Температура внутреннего воздуха CB, °C	Температура внутреннего воздуха в системе вентиля- ции определяется в резуль- тате расчета	Р
70	Dshb_sv	Диаметр шайбы на систему вентиляции, мм	Значение диаметра шай- бы на систему вентиляции определяется в результате наладочного расчета	Р

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
71	Nshb_sv	Количество шайб на систе- му вентиляции, шт	Количество шайб на систе- му вентиляции определяет- ся в результате наладочного расчета.	Р
72	dHshb_sv	Потери напора на шайбе CB, м	Определяется в результате расчета.	Р
73	Ggv	Расход сетевой воды на ГВС, т/ч	Определяется расход сете- вой воды на ГВС в резуль- тате наладочного и повероч- ного расчетов.	Р
74	Gcirc	Расход сетевой воды в цирк.трубопроводе, т/ч	Определяется расход воды в цирк. трубопроводе ГВС в результате наладочного и поверочного расчетов.	Р
75	Dshb_gvs	Диаметр шайбы в циркуля- ционной линии ГВС, мм	Диаметр шайбы на вводе ГВС определяется в резуль- тате наладочного расчета.	Р
76	Nshb_gvs	Количество шайб в циркуля- ционной линии ГВС, шт.	Количество шайб на вводе ГВС определяется в резуль- тате наладочного расчета.	Р
77	dHshb_gvs	Потери напора на шайбе ГВС, м	В результате расчета опре- деляются потери напора на шайбе ГВС.	Р
78	Dshb_circ	Диаметр циркуляционной шайбы на ГВС, мм	Диаметр циркуляционной шайбы на ГВС определяет- ся в результате наладочного расчета.	Р
79	Nshb_circ	Количество циркуляцион- ных шайб на ГВС, шт.	Количество циркуляцион- ных шайб на ГВС опреде- ляется в результате наладоч- ного расчета.	Р
80	Dshb_so_pod_u	Диаметр установленной шайбы на под.тр-де перед СО, мм	Задается значение диамет- ра фактически установлен- ной шайбы на подающем трубопроводе перед СО.	ИО*
81	Nshb_so_pod_u	Количество установленных шайб на под.тр-де перед СО, шт	Задается количество уста- новленных шайб на пода- ющем трубопроводе перед СО.	ИО*
82	Dshb_so_obr_u	Диаметр установленной шайбы на обр.тр-де после СО, мм	Задается значение диамет- ра фактически установлен- ной шайбы на обратном тру- бопроводе после СО.	ИО*
83	Nshb_so_obr_u	Количество установленных шайб на обр.тр-де после СО, шт	Задается количество уста- новленных шайб на об-	ИО*

№	Имя поля	Наименование поля	Информация, записывае-	Тип
			ратном трубопроводе после СО.	
84	Dshb_sv_u	Диаметр установленной шайбы на систему вентиля- ции, мм	Задается значение диамет- ра фактически установлен- ной шайбы на систему вен- тиляции.	ИО*
85	Nshb_sv_u	Количество установленных шайб на систему вентиля- ции, шт	Задается количество уста- новленных шайб на систему вентиляции.	ИО*
86	Dshb_gvs_u	Диаметр установленной шайбы в циркуляционной линии ГВС, мм	Задается значение диаметра фактически установленной шайбы на циркуляционной линии ГВС.	ИО*
87	Nshb_gvs_u	Количество установленных шайб в циркуляционной ли- нии ГВС, шт.	Задается количество уста- новленных шайб на ГВС.	ИО*
88	Dshb_circ_u	Диаметр установленной циркуляционной шайбы на ГВС, мм	Задается значение диаметра фактически установленной шайбы на ГВС.	ИО*
89	Nshb_circ_u	Количество установленных шайб в циркуляционной ли- нии ГВС, шт.	Задается количество уста- новленных шайб на цирку- ляционной линии ГВС.	ИО*
90	Nsec_niz	Количество секций ТО ГВС І ступень	Указывается количество секций теплообменного ап- парата 1ой ступени на ГВС например 1, 2, 3 и т.д.	ИО
91	Ngr_niz	Количество паралл. групп ТО ГВС I ступень	указывается количество па- раллельных групп теплооб- менного аппарата 1ой ступе- ни на ГВС.	ИО
92	Hsec_niz	Потери напора в одной сек- ции I ступени, м	Указываются потери напора в одной секции ТО 1ой сту- пени на ГВС, например 0.5, 1, 1.5 м вод.ст.	ИО
93	T11_i_niz	Исп. температура на входе 1 контура I ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
94	T12_i_niz	Исп. температура на выходе 1 контура I ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные	ИО

N⁰	Имя поля	Наименование поля	Информация, записывае-	Тип
			параметры теплообменно-	
			<u>ro annapama</u>	
95	T21_i_niz	Исп. температура на входе 2 контура I ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
96	T22_i_niz	Исп. температура на выходе 2 контура I ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
97	Q_i_niz	Исп. тепловая нагрузка І ступени, Гкал/час	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
98	Gniz	Расход 1 контура I ступени ТО ГВС, т/ч	Расход сетевой воды, посту- пающий в первую ступень ТО ГВС определяется в ре- зультате расчета	Р
99	G2_niz	Расход 2 контура I ступени ТО ГВС, т/ч	Расход горячей воды во вто- ром контуре, определяется в результате расчета	Р
100	Q_niz	Тепловая нагрузка I ступе- ни, Гкал/час	Тепловая нагрузка I ступени ТО на ГВС, определяется в результате расчета	Р
101	T11_niz	Температура на входе 1 кон- тура I ступени,°С	Температура на входе 1 кон- тура I ступени ТО на ГВС, определяется в результате расчета	Р
102	T12_niz	Температура на выходе 1 контура I ступени,°С	Температура на выходе 1 контура I ступени ТО на ГВС, определяется в резуль- тате расчета	Р
103	T21_niz	Температура на входе 2 кон- тура I ступени,°С	Температура на входе 2 кон- тура I ступени ТО на ГВС, определяется в результате расчета	Р
104	T22_niz	Температура на выходе 2 контура I ступени,°С	Температура на выходе 2 контура I ступени ТО на	Р

№	Имя поля	Наименование поля	Информация, записывае-	Тип
			ГВС, определяется в резуль- тате расчета	
105	Nsec_verh	Количество секций ТО ГВС II ступень	Указывается количество секций теплообменного ап- парата 20й ступени на ГВС например 1, 2, 3 и т.д.	ИО
106	Ngr_verh	Количество паралл. групп ТО ГВС II ступень	Указывается количество параллельных групп теплооб- менного аппарата 20й ступе- ни на ГВС	ИО
107	Hsec_verh	Потери напора в одной сек- ции II ступени, м	Указываются потери напора в одной секции ТО 20й сту- пени на ГВС, например 0.5, 1, 1.5 м вод.ст.	ИО
108	T11_i_verh	Исп. температура на входе 1 контура II ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
109	T12_i_verh	Исп. температура на выходе 1 контура II ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
110	T21_i_verh	Исп. температура на входе 2 контура II ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
111	T22_i_verh	Исп. температура на выходе 2 контура II ступени,°С	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообменно- го аппарата	ИО
112	Q_i_verh	Исп. тепловая нагрузка II ступени, Гкал/час	При наличии результатов за- меров, задается испытатель- ные температуры. Об испы- тательных параметрах ТО Глава 8, Испытательные	ИО

№	Имя поля	Наименование поля	Информация, записывае-	Тип
			мая в поле	
			параметры теплообменно- го аппарата	
113	T11_verh	Температура на входе 1 кон- тура II ступени,°С	Температура на входе 1 кон- тура II ступени ТО на ГВС, определяется в результате расчета	Р
114	T12_verh	Температура на выходе 1 контура II ступени,°С	Температура на выходе 1 контура II ступени ТО на ГВС, определяется в резуль- тате расчета	Р
115	T21_verh	Температура на входе 2 кон- тура II ступени,°С	Температура на входе 2 кон- тура II ступени ТО на ГВС, определяется в результате расчета	Р
116	T22_verh	Температура на выходе 2 контура II ступени,°С	Температура на выходе 2 контура II ступени ТО на ГВС, определяется в резуль- тате расчета	Р
117	Gverh	Расход 1 контура II ступени ТО ГВС, т/ч	Расход 1 контура II ступени ТО на ГВС, определяется в результате расчета	Р
118	G2_verh	Расход 2 контура II ступени ТО ГВС, т/ч	Расход 2 контура II ступени ТО на ГВС, определяется в результате расчета	Р
119	Q_verh	Тепловая нагрузка II ступе- ни, Гкал/час	Тепловая нагрузка II ступе- ни ТО на ГВС, определяется в результате расчета	Р
120	Gset_nal	Расход сетевой воды на СО после наладки, т/ч	В результате расчета опре- деляется расход сетевой во- ды на систему отопления по- сле наладки	Р
121	Hset_nal	Напор на регуляторе давле- ния СО, м	В результате расчета опре- деляется необходимый рас- полагаемый напор для си- стемы отопления	Р
122	Kreg	Коэффициент пропускной способности РД СО	Задается коэффициент про- пускной способности регу- лятора давления (подпора) в СО.	ИО
123	Gsum_pod	Суммарный расход сетевой воды, т/ч	Определяется в результате расчета	Р
124	H_ras	Располагаемый напор на вводе потребителя, м	Определяется в результате расчета	Р
125	H_pod	Напор в подающем трубо- проводе, м	Определяется в результате расчета	Р

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
126	H_obr	Напор в обратном трубопро- воде, м	Определяется в результате расчета	Р
127	Ppod	Давление в подающем тру- бопроводе, м	Определяется в результате расчета	Р
128	Pobr	Давление в обратном трубо- проводе, м	Определяется в результате расчета	Р
129	Gut_pot	Утечка из системы теплопо- требления, т/ч	Определяется в результате расчета	Р
130	Qut_pot	Потери тепла от утечки, Ккал	Определяется в результате расчета	Р
131	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
132	Dist	Путь, пройденный от источ- ника, м	Определяется в результате расчета	Р
133	Тb	Давление вскипания, м	Определяется в результате расчета	Р
134	Hstat	Статический напор, м	Определяется в результате расчета	Р
135	Gcon_so	Расчетный расход на СО (констр), т/ч	Задается расчетный расход воды на систему отопления для выполнения конструк- торского расчета	ИО***
136	Gcon_sv	Расчетный расход на СВ (констр), т/ч	Задается расчетный расход воды на систему вентиляции для выполнения конструк- торского расчета	ИО***
137	Gcon_gv	Расчетный расход на ГВС (констр), т/ч	Задается расчетный рас- ход воды на систему ГВС для выполнения конструк- торского расчета	ИО***
138	Hcon_ras	Располагаемый напор на вводе (констр), м	Задается располагаемый на- пор для выполнения кон- структорского расчета	ИО***
139	Beta_nad	Коэффициент тепловой ак- кумуляции, ч	Указывается коэффициент тепловой аккумуляции по- требителя.	ИО*
140	Tmin_nad	Минимально допустимая температура,°С	Указывается минимально допустимая температура внутреннего воздуха у по- требителя, на время устра- нения аварии.	ИО*
141	R_nad	Вероятность безотказной работы	Определяется в результате расчета надежности.	Р

№	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
142	K_nad	Коэффициент готовности	Определяется в результате расчета надежности.	Р
143	Qlost_nad	Средний суммарный недо- отпуск теплоты, Гкал/ от.период	Определяется в результате расчета надежности.	Р

24.4. Насосная станция

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Name	Наименование насосной станции	Записывается наименова- ние насосной станции или насоса, например, насос- ная станция №1, и т.д.	ИН
2	Nist	Номер источника	Определяется в результа- те расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (вер- ха) трубы, на которой установлен данный насос. Она может автоматически быть считана со слоя ре- льефа (Раздел 19.3, «Авто- матическое занесение гео- дезических отметок объ- ектов сети со слоя релье- фа»).	ИО
4	Type_pod	Способ задания насоса на подающем	Выбирается из списка способ задания насоса на подающем трубопроводе. 0 (или пусто)- по умолча- нию 1- характеристикой насо- са 2- напором на насосе 3- напор после насоса (с учетом геодезической от- метки) 4- давление после насоса	ИО
5	Mark_pod	Марка насоса на подаю- щем	Выбирается из справоч- ника марка насоса уста- новленного на подаю- щем трубопроводе. <u>Раз-</u>	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			дел 20.2, «Справочник по насосам»	
6	Npod	Число насосов на подаю- щем тр-де	Указывается число параллельно работающих насосов одинаковых марок, установленных на подающем трубопроводе	ИО
7	Hpod	Напор насоса на подаю- щем трубопроводе, м	Задается напор, развива- емый насосом на пода- ющем трубопроводе. Ис- пользуется в том случае если способ задания на- соса указан как 2 (напо- ром на насосе) или когда не указана марка насоса и способ задания не ука- зан. Если насос повышает напор, то значение запи- сывается со знаком плюс, если понижает напор, то со знаком минус, напри- мер +30,-40 м.	ИО
8	Pr_pod	Напор после насоса на по- дающем, м	Задается пользователем. В случае если способ зада- ния насоса указан 3 (напор после насоса), то указыва- ется значение напора по- сле насоса с учетом гео- дезической отметки. Если способ задания насоса 4 (давление после насоса), то указывается значение напора после насоса, без учета геодезии.	ИО
9	Hin_pod	Напор на входе в насос- ную в под. трубопр-де, м	Определяется в результа- те расчета	Р
10	Hout_pod	Напор на выходе из насос- ной в под. трубопр-де, м	Определяется в результа- те расчета	Р
11	Pin_pod	Давление в подающем тр- де перед узлом, м	Определяется в результа- те расчета	Р
12	Pout_pod	Давление в подающем тр- де после узла, м	Определяется в результа- те расчета	Р
13	Gpod	Расход воды в подающем трубопроводе, т/ч	Определяется в результа- те расчета	Р
14	Tpod	Температура воды в пода- ющем трубопроводе,°С	Определяется в результа- те расчета	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
15	Type_obr	Способ задания насоса на обратном	Выбирается из списка способ задания насоса на подающем трубопроводе.	ИО
			0 (или пусто)- по умолча- нию	
			1- характеристикой насо- са	
			2- напором на насосе	
			3- напор до насоса (с уче- том геодезической отмет- ки)	
			4- давление до насоса	
16	Mark_obr	Марка насоса на обратном	Выбирается из справочни- ка марка насоса установ- ленного на обратном тру- бопроводе. <u>Раздел 20.2</u> , «Справочник по насосам»	ИО
17	Nobr	Число насосов на обрат- ном тр-де	Указывается число параллельно работающих насосов одинаковых марок, установленных на обратном трубопроводе	ИО
18	Hobr	Напор насоса на обр. тру- бопр-де, м	Задается напор, развивае- мый насосом на обратном трубопроводе. Использу- ется в том случае ес- ли способ задания насоса указан как 2 (напором на насосе) или когда не ука- зана марка насоса и спо- соб задания не указан. Ес- ли насос повышает напор, то значение записывает- ся со знаком плюс, ес- ли понижает напор, то со знаком минус, например +30,-40 м.	ИО
19	Pr_obr	Напор перед насосом на обратном, м	Задается пользователем. В случае если способ зада- ния насоса указан 3 (напор после насоса), то указыва- ется значение напора пе- ред насосом с учетом гео- дезической отметки. Если	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			способ задания насоса 4	
			(давление после насоса),	
			то указывается значение	
			напора перед насосом, без	
			учета геодезии.	
20	Hin_obr	Напор на входе в насос-	Определяется в результа-	Р
		ную в обр. трубопр-де, м	те расчета	
21	Hout_obr	Напор на выходе из насос-	Определяется в результа-	Р
		ной в обр. трубопр-де, м	те расчета	
22	Pout obr	Давление в обратном тр-	Определяется в результа-	Р
		де после узла, м	те расчета	
23	Pin obr	Давление в обратном тр-	Определяется в результа-	Р
		де перед узлом, м	те расчета	
24	Gobr	Расход воды в обратном	Определяется в результа-	Р
		трубопроводе, т/ч	те расчета	
25	Tobr	Температура воды в об-	Определяется в результа-	Р
		ратном трубопроводе,°С	те расчета	
26	Time	Время прохождения воды	Определяется в результа-	Р
		от источника, мин	те расчета	
27	Dist	Путь, пройденный от ис-	Определяется в результа-	Р
		точника, м	те расчета	
28	Tb	Давление вскипания, м	Определяется в результа-	Р
			те расчета	
29	Hstat	Статический напор, м	Определяется в результа-	Р
			те расчета	
30	Hstat_out	Статический напор на вы-	Определяется в результа-	Р
		ходе, м	те расчета	

24.5. Запорная арматура

№	Имя поля	Наименование поля	Информация, записы- ваемая в поле	Тип
1	Name	Наименование армату- ры	Задается пользователем, например Задвижка № 22	ИН
2	Nist	Номер источника	Определяется в резуль- тате расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) трубы, на ко- торой установлено дан- ное запорное или регу- лирующее устройство. Она может автомати- чески быть считана со слоя рельефа (<u>Pa3-</u>	ИО

N⁰	Имя поля	Наименование поля	Информация, записы- ваемая в поле	Тип
			дел 19.3, «Автоматиче- ское занесение геодези- ческих отметок объек- тов сети со слоя релье- фа»).	
4	Mark_pod	Марка задвижки на по- дающем	Выбирается из справоч- ника марка установлен- ной запорной арматуры на подающем трубопро- воде. Подробнее о рабо- те со справочником <u>Раз-</u> дел 20.3, «Справочник по запорной арматуре».	ИО
5	Dpod	Условный диаметр на подающем, м	Задается пользователем диаметр установленной на подающем трубопро- воде запорной армату- ры, например 0.1, 0.2 м. В случае, моделирова- ния тепловой сети на слив, указывается диа- метр сливного отвер- стия. Подробнее об этом Раздел 2.8.1, «Слив че- рез задвижку».	ИО
6	Per_pod	Степень открытия на подающем	Задается пользователем степень открытия арма- туры установленной на подающем трубопрово- де. Сопротивление со- ответствующее степени открытия можно про- смотреть в Справочни- ке по запорной арматуре при выборе марки (Раз- дел 20.3, «Справочник по запорной арматуре»). При работе на слив ука- зывается значение "-1". Подробнее об этом Раз- дел 2.8.1, «Слив через задвижку».	ИО
7	Mark_obr	Марка задвижки на об- ратном	Выбирается из справоч- ника марка установлен- ной запорной арматуры на обратном трубопро- воде. Подробнее о рабо-	ИО

№	Имя поля	Наименование поля	Информация, записы- ваемая в поле	Тип
			те со справочником <u>Раз-</u> дел 20.3, «Справочник по запорной арматуре».	
8	Dobr	Условный диаметр на обратном, м	Задается пользователем диаметр установленной на обратном трубопро- воде запорной армату- ры, например 0.1, 0.2 м. В случае, моделирова- ния тепловой сети на слив, указывается диа- метр сливного отвер- стия. Подробнее об этом	ИО
			<u>Раздел 2.8.1, «Слив через задвижку»</u> .	
9	Per_obr	Степень открытия на обратном	Задается пользователем степень открытия арма- туры установленной на обратном трубопрово- де. Сопротивление со- ответствующее степени открытия можно про- смотреть в Справочни- ке по запорной арматуре при выборе марки (Раз- дел 20.3, «Справочник по запорной арматуре»). При работе на слив ука- зывается значение "-1". Подробнее об этом Раз- дел 2.8.1, «Слив через задвижку».	ИО
10	H_ras	Располагаемый напор, м	Определяется в резуль- тате расчета	Р
11	Hout	Располагаемый напор на выходе, м	Определяется в резуль- тате расчета	Р
12	H_pod	Напор в подающем тру- бопроводе, м	Определяется в резуль- тате расчета	Р
13	Hout_pod	Напор после узла в по- дающем, м	Определяется в резуль- тате расчета	Р
14	H_obr	Напор в обратном тру- бопроводе, м	Определяется в резуль- тате расчета	Р
15	Hout_obr	Напор после узла в обратном, м	Определяется в резуль- тате расчета	Р

№	Имя поля	Наименование поля	Информация, записы- ваемая в поле	Тип
16	Tpod	Температура воды в под. тр-де,°С	Определяется в резуль- тате расчета	Р
17	Tobr	Температура воды в обр. тр-де,°С	Определяется в резуль- тате расчета	Р
18	Ppod	Давление в подающем трубопроводе, м	Определяется в резуль- тате расчета	Р
19	Pout_pod	Давление после узла в подающем, м	Определяется в резуль- тате расчета	Р
20	Pobr	Давление в обратном трубопроводе, м	Определяется в резуль- тате расчета	Р
21	Pout_obr	Давление после узла в обратном, м	Определяется в резуль- тате расчета	Р
22	Time	Время прохождения во- ды от источника, мин	Определяется в резуль- тате расчета	Р
23	Dist	Путь, пройденный от источника, м	Определяется в резуль- тате расчета	Р
24	Tb	Давление вскипания, м	Определяется в резуль- тате расчета	Р
25	Hstat	Статический напор, м	Определяется в резуль- тате расчета	Р
26	Hstat_out	Статический напор на выходе, м	Определяется в резуль- тате расчета	Р
27	Lambda_t_nad	Средняя интенсивность отказов, 1/(км*ч)	Указывается средняя интенсивность отказов запорного устройства на основе статистических данных. Если пользова- тель не вносит статисти- ческие данные по отка- зам оборудования теп- ловых сетей, то сред- нее значение интен- сивности отказов од- ного элемента запор- но- регулирующей ар- матуры (одной задвиж- ки), принимается рав- ным 2,28E-7, 1/ч или 0,002 1/год. Если значение поля 0 или Пусто, то данный объект считается полно- стью надежным.	
28	Lambda_r_nad	Расчетная интенсив- ность отказов, 1/(км*ч)	Задается рассчитанная пользователем величи-	

№	Имя поля	Наименование поля	Информация, записы- ваемая в поле	Тип
			на интенсивности от- казов. Указывается для уточнения математиче- ской модели в случае, если были проведены самостоятельные расче- ты.	
29	Tr_nad	Расчетное время восста- новления, ч	Указывается время вос- становления данного элементы на основе соб- ственных данных. Ис- пользуется для уточне- ния математической мо- дели в случае, если бы- ли проведены самостоя- тельные расчеты.	
30	Texp_nad	Период эксплуатации, лет	Указывается время экс- плуатации задвижки. Возможно указать год установки или срок экс- плуатации. По-умолча- нию расчетный год счи- тается текущий, настро- ить его можно в на- стройках расчета надеж- ности (Раздел 9.9, «На- стройка расчета надеж- ности»).	
31	Trep_nad	Время восстановления, ч	Определяется в резуль- тате расчета надежно- сти.	Р
32	Mrep_nad	Интенсивность восста- новления, 1/ч	Определяется в резуль- тате расчета надежно- сти.	Р
33	Lambda_nad	Интенсивность отказов, 1/(км*ч)	Определяется в резуль- тате расчета надежно- сти.	Р
34	Omega_nad	Поток отказов, 1/ч	Определяется в резуль- тате расчета надежно- сти.	Р
35	Qot_nad	Относительное кол. от- ключ. нагрузки	Определяется в резуль- тате расчета надежно- сти.	Р
36	Pbreak_nad	Вероятность отказа	Определяется в резуль- тате расчета надежно- сти.	Р

24.6. Участок тепловой сети

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Nist	Номер источника	Определяется в результа- те расчета	Р
2	Owner	Балансодержатель	Указывается пользовате- лем имя владельца (ба- лансодержателя) участка тепловой сети, например МУП Теплоэнерго. Ис- пользуется в расчетах теп- ловых потерь суммарно за год.	ИО****
3	Begin_uch	Наименование начала участка	Задается наименование начала участка (наимено- вание узла, тепловой ка- меры, с которой данный участок начинается), на- пример ТК-15. После на- личии наименований уз- ловых объектов, возмож- но автоматическое запол- нение названия начала и конца участка. Подроб- нее об этом Раздел 19.2, «Автоматическое занесе- ние начала и конца участ- ков»	ИН
4	End_uch	Наименование конца участка	Задается наименование конца участка (наимено- вание узла, тепловой ка- меры, с которой данный участок начинается), на- пример ТК-16. После на- личии наименований уз- ловых объектов, возмож- но автоматическое запол- нение названия начала и конца участка. Подроб- нее об этом Раздел 19.2, «Автоматическое занесе- ние начала и конца участ- ков»	ИН
5	L	Длина участка, м	Задается длина участка в плане с учетом длины П- образных компенсаторов, например 100, 150 м. Дан- ное поле можно запол- нить автоматически, взяв	ИО

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			длину участка с карты в масштабе. <u>Раздел 19.1,</u> «Автоматическое занесе- ние длины с карты»	
6	Dpod	Внутренний диаметр по- дающего трубопровода, м	Задается внутренний диа- метр подающего трубо- провода, например 0.05, 0.1, 0.15, 1,2 м	ИО
7	Dobr	Внутренний диаметр об- ратного трубопровода, м	Задается внутренний диа- метр обратного трубопро- вода, например 0.05, 0.1, 0.15, 1,2 м	ИО
8	Zpod	Сумма коэф. местных со- противлений под. тр-да	Задается сумма коэффи- циентов местных сопро- тивлений подающего тру- бопровода, например 4, 8. Может быть автоматиче- ски записана при работе со справочником по мест- ным сопротивлениям.	ИО
9	Zpod_str	Местные сопротивления под.тр-да	В случае, если сумма ко- эффициентов местных со- противлений на подаю- щем трубопроводе неиз- вестна, а известны коли- чество и виды местных со- противлений, то с помо- щью данного поля мож- но рассчитать сумму ко- эффициентов местных со- противлений. Подробнее <u>Раздел 20.5, «Справочник</u> по местным сопротивле- ниям»	ИО
10	Zobr	Сумма коэф. местных со- противлений обр. тр-да	Задается сумма коэффи- циентов местных сопро- тивлений обратного тру- бопровода, например 4, 8. Задается сумма коэффи- циентов местных сопро- тивлений подающего тру- бопровода, например 4, 8. Может быть автоматиче- ски записана при работе со справочником по мест- ным сопротивлениям.	ИО
11	Zobr_str	Местные сопротивления обр.тр-да	В случае, если сумма ко- эффициентов местных со-	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			противлений на обрат- ном трубопроводе неиз- вестна, а известны коли- чество и виды местных со- противлений, то с помо- щью данного поля мож- но рассчитать сумму ко- эффициентов местных со- противлений. Подробнее Раздел 20.5, «Справочник по местным сопротивле- ниям»	
12	Ke_pod	Шероховатость подающе- го трубопровода, мм	Задается значение шероховатости подающего трубопровода, например 0.5, 1, 2, 3, 4 мм и т.д. Для новых стальных труб коэффициент шероховатости принимается в соответствии со СНиП 0.5 мм.	ИО
13	Ke_obr	Шероховатость обратного трубопровода, мм	Задается значение шеро- ховатости обратного тру- бопровода, например 0.5, 1, 2, 3, 4 мм и т.д. Для новых стальных труб коэффициент шерохова- тости принимается в соот- ветствии со СНиП 0.5 мм.	ИО
14	Zarost_pod	Зарастание подающего трубопровода, мм	Задается пользователем величина зарастания по- дающего трубопровода, например 5, 10, 15 мм. Зарастание трубопрово- да приводит к уменьше- нию внутреннего диамет- ра трубопровода и резко- му увеличению гидравли- ческих потерь	ИО
15	Zarost_obr	Зарастание обратного тру- бопровода, мм	Задается пользователем величина зарастания по- дающего трубопровода, например 5, 10, 15 мм. Зарастание трубопрово- да приводит к уменьше- нию внутреннего диамет- ра трубопровода и резко-	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			му увеличению гидравли-	
			ческих потерь	
16	Kz pod	Коэффициент местного	Если местные сопротив-	ИО
		сопротивления под.тр-да	ления неизвестны, то в	
			этом случае пользователь	
			может увеличить действи-	
			тельную длину трубопро-	
			вода добавлением эквива-	
			лентной длины. характе-	
			ризующей потери в мест-	
			ных сопротивлениях. За-	
			лается коэффициент мест-	
			ного сопротивления лля	
			полающего трубопровода	
			например 1.1 или 1.2. В	
			этом случае лействитель-	
			ная ллина участка трубо-	
			провола булет увеличена	
			на 10 или 20 % соответ-	
			ственно	
17	I Z1	IC 1 1		UO.
1/	Kz_obr	Коэффициент местного	Если местные сопротив-	ИО
		сопротивления обр.тр-да	ления неизвестны, то в	
			этом случае пользователь	
			может увеличить действи-	
			тельную длину трубопро-	
			вода дооавлением эквива-	
			лентной длины, характе-	
			ризующеи потери в мест-	
			ных сопротивлениях. За-	
			дается коэффициент мест-	
			ного сопротивления для	
			обратного трубопровода,	
			например 1.1 или 1.2. В	
			этом случае деиствитель-	
			ная длина участка трубо-	
			на то или 20 % соответ-	
			ственно.	
18	Spod	Сопротивление подающе-	Задается пользователем	ИО
		го тр-да, м/(т/ч)^2	величина сопротивления	
			подающего трубопровода.	
			Данная величина задается	
			для уточнения математи-	
			ческой модели в случае,	
			если были проведены за-	
			меры расхода теплоноси-	
			теля и давления в начале и	
			конце участка сети.	

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
19	Sobr	Сопротивление обратного тр-да, м/(т/ч)^2	Задается пользователем величина сопротивления обратного трубопровода. Данная величина задается для уточнения математической модели в случае, если были проведены замеры расхода теплоносителя и давления в начале и конце участка сети.	ИО
20	StatZone	Разделитель зон статиче- ского напора	Задается признак разделе- ния данным участком сети на зоны с разным статиче- ским напором: 0 или пусто- разделение на зоны отсутствует; 1- от начала участка начи- нается новая зона.	ИО
21	Proklad	Вид прокладки тепловой сети	Вид прокладки тепловой сети выбирается из выпа- дающего списка: 1- Надземная. 2- Подземная канальная. 3- Подземная бесканаль- ная. 4- Подвальная. 5- Туннельная.	ИО**
22	Norma	Нормативные потери в тепловой сети (1-5)	Выбирается из списка, по каким нормативам следу- ет считать нормативные тепловые потери: 1- 1959 год. 2- 1988 год. 3- 1997 год. 4- 2003 год. 5- КТМ 204 (Украина). 6- Беларусь до 1994.	ИО**

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			 7- Беларусь с 1994 до 01.07.1995. 8- Беларусь с 01.07.1995 	
23	Use_pod	Период работы подающе- го тр-да	Выбирается пользовате- лем из списка период ра- боты трубопровода: 0 (Пусто)- Весь год. 1- Зимний период.	ИО***
			2- Летний период.	
24	Use_obr	Период работы обратного тр-да	Выбирается пользовате- лем из списка период ра- боты трубопровода: 0 (Пусто)- Весь год. 1- Зимний период. 2- Летний период.	ИО***
25	Kpoprav	Поправочный коэфф. на нормы тепловых потерь для подающего тр-да	Задается пользователем по результатам темпера- турных испытаний, ес- ли температурные испы- тания не проводились, по- правочный коэффициент на нормы тепловых по- терь принимается равным 1.0	ИО**
26	Kpop_obr	Поправочный коэфф. на нормы тепловых потерь для обратного тр-да	Задается пользователем по результатам темпера- турных испытаний, ес- ли температурные испы- тания не проводились, по- правочный коэффициент на нормы тепловых по- терь принимается равным 1.0	ИО**
27	Grunt	Вид грунта	Выбирается из списка вид грунта. <u>Приложе-</u> ние F, <i>Коэффициенты</i> <u>теплопроводности изоля-</u> ции	ИО**
28	Hzal	Глубина заложения тру- бопровода, м	Указывается пользовате- лем глубина заложения трубопровода от оси до поверхности земли, на- пример 0.8, 1.0, 1.2 м	ИО**

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
29	Izol_pod	Теплоизоляционный ма- териал под.тр-да	Выбирается из списка теплоизоляционный материал подающего трубопровода. Для добавления и редактирования материалов используется <u>Раздел 20.7, «Справочник по</u> теплопроводности изоляции».	ИО**
30	Izol_obr	Теплоизоляционный ма- териал обр.тр-да	Выбирается из списка теплоизоляционный материал обратного трубопровода. Для добавления и редактирования материалов используется Раздел 20.7, «Справочник по теплопроводности изоляции».	ИО**
31	Wizol_pod	Толщина изоляции пода- ющего тр-да, м	Толщина изоляции подающего трубопровода за- дается пользователем, на- пример 0.07, 0.1 м.	ИО**
32	Wizol_obr	Толщина изоляции обрат- ного тр-да, м	Толщина изоляции обрат- ного трубопровода задает- ся пользователем, напри- мер 0.07, 0.1 м.	ИО**
33	Tex_pod	Техническое состояние изоляции под.тр-да	Выбирается из выпада- ющего списка состояние теплоизоляционного ма- териала подающего тру- бопровода. При выпол- нении расчетов прини- маются средние значе- ния поправок к коэффи- циентам теплопроводно- сти теплоизоляционных материалов, приведенные в приложении <u>Приложе-</u> ние F, <i>Коэффициенты</i> <i>теплопроводности изоля- ции</i> .	ИО**
34	Tex_obr	Техническое состояние изоляции обр.тр-да	Выбирается из выпадающего списка состояние теплоизоляционного ма- териала обратного тру- бопровода. При выпол- нении расчетов прини- маются средние значе- ния поправок к коэффи-	ИО**

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			циентам теплопроводно- сти теплоизоляционных материалов приведенных в приложении <u>Приложе-</u> ние F, <i>Коэффициенты</i> <i>теплопроводности изоля-</i> <i>ции</i> .	
35	S	Расстояние между осями трубопроводов, м	Задается пользователем расстояние между осями трубопроводов, например 0.5, 1.0 м	ИО**
36	Hkanal	Высота канала, м	Задается пользователем в зависимости от марки ка- нала и условного диамет- ра труб, например, для ка- нала марки КЛ 90-45 при условном диаметре пода- ющей и обратной трубы 0.1 м высота канала 0.63 м (Приложение D, Основ- ные типы сборных же- лезобетонных каналов для тепловой сети)	ИО**
37	Wkanal	Ширина канала, м	Задается пользователем в зависимости от марки ка- нала и условного диамет- ра труб в соответствии с (Приложение D, Основ- ные типы сборных жее- лезобетонных каналов для тепловой сети), напри- мер, для канала марки КЛ 90-45 при условном диа- метре подающей и обрат- ной трубы 0.1 м ширина канала 1.15 м	ИО**
38	Q1_pod	Дополнительные потери тепла под.тр-да, ккал	Наряду с тепловыми по- терями через изоляцию, имеется возможность за- давать дополнительные фиксированные тепловые потери. Эту возможность можно использовать, на- пример, для моделирова- ния отбора тепла в слу- чае трубопроводов-спут- ников.	ИО**

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
39	Q1_obr	Дополнительные потери тепла обр.тр-да, ккал	Наряду с тепловыми по- терями через изоляцию, имеется возможность за- давать дополнительные фиксированные тепловые потери. Эту возможность можно использовать, на- пример, для моделирова- ния отбора тепла в слу- чае трубопроводов-спут- ников.	ИО**
40	Gpod	Расход воды в подающем трубопроводе, т/ч	Определяется в результа- те расчета	Р
41	Gobr	Расход воды в обратном трубопроводе, т/ч	Определяется в результа- те расчета	Р
42	dH_pod	Потери напора в подаю- щем трубопроводе, м	Определяется в результа- те расчета	Р
43	dH_obr	Потери напора в обратном трубопроводе, м	Определяется в результа- те расчета	Р
44	dHud_pod	Удельные линейные поте- ри напора в под.тр-де, мм/ м	Определяется в результа- те расчета	Р
45	dHud_obr	Удельные линейные поте- ри напора в обр.тр-де, мм/ м	Определяется в результа- те расчета	Р
46	Vpod	Скорость движения воды в под.тр-де, м/с	Определяется в результа- те расчета	Р
47	Vobr	Скорость движения воды в обр.тр-де, м/с	Определяется в результа- те расчета	Р
48	Gut_pod	Величина утечки из пода- ющего трубопровода, т/ч	Определяется в результа- те расчета	Р
49	Gut_obr	Величина утечки из об- ратного трубопровода, т/ч	Определяется в результа- те расчета	Р
50	Qpot_pod	Тепловые потери в подаю- щем трубопроводе, ккал/ч	Определяется в результа- те расчета	Р
51	Qpot_obr	Тепловые потери в обрат- ном трубопроводе, ккал/ч	Определяется в результа- те расчета	Р
52	Tbeg_pod	Температура в начале участка под.тр-да,°С	Определяется в результа- те расчета	Р
53	Tend_pod	Температура в конце участка под.тр-да,°С	Определяется в результа- те расчета	Р
54	Tbeg_obr	Температура в начале участка обр.тр-да,°С	Определяется в результа- те расчета	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
55	Tend_obr	Температура в конце участка обр.тр-да,°С	Определяется в результа- те расчета	Р
56	Drek_pod	Диаметр подающего тр-да (конструкторский), м	Определяется в результа- те конструкторского рас- чета	Р
57	Drek_obr	Диаметр обратного тр-да (конструкторский), м	Определяется в результа- те конструкторского рас- чета	Р
58	Ke_con_pod	Шероховатость под. тр-да (конструкторский), мм	Задается коэффициент шероховатости подающе- го трубопровода (толь- ко при выполнении Конструкторского расче- та тепловой сети). Для но- вых стальных труб ко- эффициент шероховато- сти принимается в соот- ветствии со СНиП 0.5 мм	ИО***
59	Ke_con_obr	Шероховатость обр. тр-да (конструкторский), мм	Задается коэффициент шероховатости обратного трубопровода (только при выполнении Конструк- торского расчета тепло- вой сети). Для новых стальных труб коэффици- ент шероховатости при- нимается в соответствии со СНиП 0.5 мм	ИО***
60	Vopt_pod	Оптимальная скорость в подающем (конструктор- ский), м/с	Задается, при проведении конструкторского расчета по скоростям, оптималь- ная скорость для подаю- щего трубопровода дан- ного участка	ИО***
61	Vopt_obr	Оптимальная скорость в обратном (конструктор- ский), м/с	Задается, при проведении конструкторского расчета по скоростям, оптималь- ная скорость для обратно- го трубопровода данного участка	ИО***
62	dHud_con_pod	Удельные линейные поте- ри подающего (конструк- торский), мм/м	Задается, при проведении конструкторского расче- та по удельным потерям, удельные линейные поте- ри для подающего трубо- провода данного участка	ИО***

Nº	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
63	dHud_con_obr	Удельные линейные потери обратного (конструкторский), мм/м	Задается, при проведении конструкторского расчета по удельным потерям, удельные линейные потери для обратного трубопровода данного участка	ИО***
64	Tubes	Сортамент	Указывается набор диа- метров, которые будут подбираться при прове- дении конструкторского расчета. Подробнее <u>Раз-</u> <u>дел 20.1, «Справочник по</u> <u>трубам»</u>	ИО***
65	Lambda_t_nad	Средняя интенсивность отказов, 1/(км*ч)	Указывается средняя ин- тенсивность отказов тру- бопровода на основе ста- тистических данных. Ес- ли пользователь не вно- сит статистические дан- ные по отказам оборудо- вания тепловых сетей, то среднее значение интен- сивности отказов 1 км од- ного теплопровода участ- ка тепловой сети в те- чение часа, принимается равным 5.7Е-006 , 1/(км·ч) или 0,05 1/(км·год). Если значение поля 0 или Пусто, то данный объект считается полностью на-	
66	Lambda_r_nad	Расчетная интенсивность отказов, 1/(км*ч)	дежным Задается рассчитанная пользователем величина интенсивности отказов. Указывается для уточне- ния математической моде- ли в случае, если были проведены самостоятель- ные расчеты. В случае использования данного поля, значения Средней интенсивности отказов в расчете не участвуют.	
67	Tr_nad	Расчетное время восста- новления, ч	Указывается время вос- становления данного	

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле участка на основе соб- ственных данных. Ис- пользуется для уточнения математической модели в случае, если были про- ведены самостоятельные расчеты.	
68	Texp_nad	Период эксплуатации, лет	Указывается время экс- плуатации трубопровода. Возможно указать год прокладки трубопровода или срок его эксплуата- ции. По-умолчанию рас- четный год считается те- кущий, настроить его можно в настройках рас- чета надежности (<u>Раз-</u> дел 9.9, «Настройка расче- та надежности»).	
69	Trep_nad	Время восстановления, ч	Определяется в результа- те расчета надежности.	
70	Mrep_nad	Интенсивность восста- новления, 1/ч	Определяется в результа- те расчета надежности.	
71	Lambda_nad	Интенсивность отказов, 1/ (км*ч)	Определяется в результа- те расчета надежности.	
72	Omega_nad	Поток отказов, 1/ч	Определяется в результа- те расчета надежности.	
73	Qot_nad	Относительное кол. от- ключ. нагрузки	Определяется в результа- те расчета надежности.	
74	Pbreak_nad	Вероятность отказа	Определяется в результа- те расчета надежности.	

24.7. Дросселирующий узел

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Name	Наименование дроссели- рующего узла	Заполняется пользовате- лем, например дроссели- рующий узел ДУ-22 и т.д.	ИН
2	Nist	Номер источника	Определяется в результа- те расчета	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (вер- ха) трубы, на котором находится данный узел. Она может автоматически быть считана со слоя ре-	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			льефа (Раздел 19.3, «Авто- матическое занесение гео- дезических отметок объ- ектов сети со слоя релье- фа»).	
4	Dshb_pod	Диаметр шайбы на байпа- се в под. тр-де, мм	Для режима работы Уста- навливаемая шайба ука- зывается диаметр шайбы на байпасе в подающем трубопроводе в мм. Для режима работы Вычисля- емая шайба определяется в результате наладочного расчета.	ИО (Р)
5	Nshb_pod	Количество шайб на бай- пасе в подающем тр-де, шт.	Для режима работы Уста- навливаемая шайба ука- зывается количество шайб на байпасе в подающем трубопроводе в мм. Для режима работы Вычисля- емая шайба определяется в результате наладочного расчета.	ИО (Р)
6	Dshb_obr	Диаметр шайбы на байпа- се в обр. тр-де, мм	Для режима работы Уста- навливаемая шайба ука- зывается диаметр шайбы на байпасе в обратном трубопроводе в мм. Для режима работы Вычисля- емая шайба определяется в результате наладочного расчета.	ИО (Р)
7	Nshb_obr	Количество шайб на бай- пасе в обратном тр-де, шт.	Для режима работы Уста- навливаемая шайба ука- зывается количество шайб на байпасе в обратном трубопроводе в мм. Для режима работы Вычисля- емая шайба определяется в результате наладочного расчета.	ИО (Р)
8	Dbp_pod	Диаметр байпаса на пода- ющем трубопроводе, м	Задается пользователем диаметр байпаса, напри- мер 0.05, 0.1 м, и т.д. Для объекта Локальное сопротивление указывает- ся диаметр локального со-	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			противления, установлен- ного на подающем тр-де, например 0.032 м.	
9	Lbp_pod	Длина байпаса на подаю- щем трубопроводе, м	Задается пользователем диаметр байпаса, напри- мер 0.05, 0.1 м, и т.д. Для объекта Локальное сопротивление указывает- ся диаметр локального со- противления, установлен-	ИО
			ного на обратном тр-де, например 0.032 м.	
10	Dbp_obr	Диаметр байпаса на об- ратном трубопроводе, м	Задается пользователем, например 0.05, 0.1 м, и т.д.	ИО
11	Lbp_obr	Длина байпаса на обрат- ном трубопроводе, м	Задается пользователем, например 3, 5 м, и т.д.	ИО
12	Zbp_pod	Сумма коэф. местных сопр. на байпасе в под. тр- де	Задается сумма коэффи- циентов местных сопро- тивлений подающего тру- бопровода, например 4, 8 и т.д. (Приложение Е, Ко- эффициенты местных со- противлений на участке трубопровода). Для объекта Локальное сопротивление указывает- ся сумма коэффициен- тов местных сопротивле- ний локального сопротив- ления, установленного на обратном тр-де, например 2, 4, 8 м.	ИО
13	Zbp_obr	Сумма коэф. местных сопр. на байпасе в обр. тр- де	Задается сумма коэффициентов местных сопро- тивлений обратного тру- бопровода, например 4, 8 и т.д. (Приложение Е, Ко- эффициенты местных со- противлений на участке трубопровода). Для объекта Локальное сопротивление указывает- ся сумма коэффициен- тов местных сопротивле- ний локального сопротив- ления, установленного на	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			обратном тр-де, например 2, 4, 8м.	
14	Ke_bp	Шероховатость байпаса, мм	Задается значение шеро- ховатости байпаса, напри- мер 0.5, 1, 2, 3, 4 мм и т.д. Для новых стальных труб шероховатость при- нимается в соответствии со СНиП 0.5 мм.	ИО
15	Hzapas	Запас напора, м	Задается пользователем запас напора на шайбе, на- пример 1, 2 м.	ИО
16	Regul_G	Способ дросселирования	Задается цифрами: 0 (пусто)- автоматическая установка 1- только на подающем тр-де. 2- только на обратном тр-	ИО
17	H	Регулируемый параметр напор, м (расход, т/ч)	де. Задается пользователем значение регулируемого параметра регулятора дав- ления «до себя», «после себя» или контролирую- щего располагаемый на- пор, например, 10, 20, 40 м. В случае установки ре- гулятора расхода задает- ся значение регулируемой величины, например, 100 т/ч.	ИО
18	Kreg	Пропускная способность регулятора	Задается пользователем пропускная способность регулирующего устрой- ства. Значение пропуск- ной способности клапана К и выражает уровень рас- хода (т/ч) регулирующего клапана, находящегося в определенном положении с потерей давления 1 бар.	ИО
19	Deq	Диаметр эквивалентной шайбы, мм	Определяется в результа- те расчета	Р
20	Hin	Располагаемый напор до узла, м	Определяется в результа- те расчета	Р

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
21	Hout	Располагаемый напор по- сле узла, м	Определяется в результа- те расчета	Р
22	Hin_pod	Напор в подающем тр-де перед узлом, м	Определяется в результа- те расчета	Р
23	Hout_pod	Напор в подающем тр-де после узла, м	Определяется в результа- те расчета	Р
24	Hin_obr	Напор в обратном тр-де перед узлом, м	Определяется в результа- те расчета	Р
25	Hout_obr	Напор в обратном тр-де после узла, м	Определяется в результа- те расчета	Р
26	dHshb_pod	Потери напора на шайбе в под.тр., м	Определяется в результа- те расчета	Р
27	dHshb_obr	Потери напора на шайбе в обр.тр., м	Определяется в результа- те расчета	Р
28	Pin_pod	Давление в подающем тр- де перед узлом, м	Определяется в результа- те расчета	Р
29	Pout_pod	Давление в подающем тр- де после узла, м	Определяется в результа- те расчета	Р
30	Pin_obr	Давление в обратном тр- де перед узлом, м	Определяется в результа- те расчета	Р
31	Pout_obr	Давление в обратном тр- де после узла, м	Определяется в результа- те расчета	Р
32	Time	Время прохождения воды от источника, мин	Определяется в результа- те расчета	Р
33	Dist	Путь, пройденный от ис- точника, м	Определяется в результа- те расчета	Р
34	ТЪ	Напор критический (вски- пания), м	Определяется в результа- те расчета	Р
35	Hstat	Статический напор на входе, м	Определяется в результа- те расчета	Р
36	Hstat_out	Статический напор на вы- ходе, м	Определяется в результа- те расчета	Р
37	Tpod	Температура воды в пода- ющем трубопроводе,°С	Определяется в результа- те расчета	Р
38	Tobr	Температура воды в об- ратном трубопроводе,°С	Определяется в результа- те расчета	Р

24.8. Центральный тепловой пункт

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
1	Adres	Адрес	Задается пользователем, например ул. Федосе- енко д.14	ИН
2	Name	Наименование узла	Задается пользователем, например ЦТП-23, и т.д.	ИН
3	Nist	Номер источника	Определяется в результа- те расчета	Р
4	H_geo	Геодезическая отметка, м	Задается отметка оси (вер- ха) трубы, на котором находится данный узел. Она может автоматически быть считана со слоя ре- льефа (<u>Раздел 19.3, «Авто-</u> матическое занесение гео- <u>дезических отметок объ- ектов сети со слоя релье- фа»</u>).	ИО
5	N_schem	Номер схемы подключе- ния ЦТП	Выбирается схема присо- единения узла ввода. Схе- мы приведены в приложе- нии <u>Приложение A, Схе- мы подключения</u> .	ИО
6	T1_r	Расчетная температура на входе 1 контура, °С	Задается расчетное зна- чение температуры теп- лоносителя на входе в первый контур, например 150, 130, 110 или 95°С	ИО
7	T1to_so	Расчетная температура на выходе 1 контура, °С	Задается расчетное значе- ние температуры теплоно- сителя на выходе из пер- вого контура, например 75, 80 °C	ИО
8	T2_r	Расчетная температура на входе 2 контура, °С	Задается расчетное значе- ние температуры теплоно- сителя на входе во второй контур, например 70°С	ИО
9	T3_r	Расчетная температура на выходе 2 контура, °С	Задается расчетное значе- ние температуры теплоно- сителя на выходе из вто- рого контура, например 95°С	ИО
10	Hnz_ras	Располагаемый напор вто- рого контура, м	Задается располагаемый напор второго контура, в случае если это преду-	ИО
N⁰	Имя поля	Наименование поля	Информация, записыва-	Тип
----	----------	---	--	-----
			емая в поле	
			смотрено схемой подклю- чения.	
11	Hnz_obr	Напор в обратнике второ- го контура, м	Задается напор в обратном трубопроводе второго контура, если это предусмотрено схемой подключения. Расчетный напор в обратном трубопроводе задается с учетом геодезической отметки расположения ЦТП, например если геодезическая отметка 50 метров, напор в обратном трубопроводе 20 метров, то расчетный напор в обратном трубопроводе равен 50 + 20 = 70 метров.	ИО
12	Nsec_so	Количество секций ТО на СО	Задается пользователем количество секций ТО, например, 1, 2, 3 и т.д.	ИО
13	Hsec_so	Потери напора в 1-й сек- ции ТО на СО, м	Задаются пользователем потери напора в теплооб- менном аппарате, напри- мер, 0.1, 0.2, 0.3, м.	ИО
14	Ngr_so	Количество параллельных групп ТО на СО	Задается количество параллельных групп ТО, например, 1, 2, 3 и т.д.	ИО
15	Nel_r	Рекомендуемый номер группового элеватора	Определяется в результа- те наладочного расчета	Р
16	Dsop_r	Рекомендуемый диаметр сопла элеватора, мм	Определяется в результа- те наладочного расчета	Р
17	U_calc	Расчетный коэффициент смешения	Определяется в результа- те наладочного расчета	Р
18	U_fakt	Фактический коэффици- ент смешения	Определяется в результа- те поверочного расчета	Р
19	Nel_u	Номер установленного элеватора	Задается номер установ- ленного группового эле- ватора, например 1, 2, 3, 4, 5, 6, 7.	ИО*
20	Dsop_u	Диаметр установленного сопла элеватора, мм	Задается значение уста- новленного диаметра соп- ла элеватора, например 3, 5, 7, 9 мм.	ИО*
21	dHsoplo	Потери напора в сопле элеватора, м	Определяется в результа- те расчета	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
22	T1_t	Температура на входе 1 контура, °С	Определяется в результа- те расчета	Р
23	T2_t	Температура на выходе 1 контура, °С	Определяется в результа- те расчета	Р
24	T3so_t	Температура на выходе 2 контура, °С	Определяется в результа- те расчета	Р
25	T2so_t	Температура на входе 2 контура, °С	Определяется в результа- те расчета	Р
26	Dshb_pod	Диаметр шайбы на под.тр- де, мм	Определяется в результа- те расчета диаметр шайбы на подающем тр-де (1 кон- тур)	Р
27	Nshb_pod	Количество шайб на под. тр-де, шт	Определяется в резуль- тате расчета количество шайб на подающем тр-де (1 контур)	Р
28	Dshb_obr	Диаметр шайбы на обр. тр-де, мм	Определяется в результа- те расчета диаметр шайбы на обратном тр-де (1 кон- тур)	Р
29	Nshb_obr	Количество шайб на обр. тр-де, шт	Определяется в резуль- тате расчета количество шайб на обратном тр-де (1 контур)	Р
30	Dshb_pod_u	Диаметр установленной шайбы на под.тр-де, мм	Задается пользователем диаметр установленной шайбы на подающем тр- де 1 контура.	ИО*
31	Nshb_pod_u	Количество установлен- ных шайб на под.тр-де, шт	Задается пользователем количество установлен- ных шайб на подающем тр-де 1 контура.	ИО*
32	Dshb_obr_u	Диаметр установленной шайбы на обр.тр-де, мм	Задается пользователем диаметр установленной шайбы на обратном тр-де 1 контура.	ИО*
33	Nshb_obr_u	Количество установлен- ных шайб на обр.тр-де, шт	Задается пользователем количество установлен- ных шайб на обратном тр- де 1 контура.	ИО*
34	dHshb_pod	Потери напора на шайбе в под. тр-де, м	Определяется в результа- те расчета	Р
35	dHshb_obr	Потери напора на шайбе в обр. тр-де, м	Определяется в результа- те расчета	Р

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
36	Dshb_gvs	Диаметр шайбы на ГВС, мм	Определяется в результа- те расчета диаметр шайбы на ГВС (1 контур).	Р
37	Nshb_gvs	Количество шайб на ГВС, шт.	Определяется в резуль- тате расчета количество шайб на ГВС (1 контур).	Р
38	Dshb_gvs_u	Диаметр установленной шайбы на ГВС, мм	Задается пользователем диаметр установленной шайбы на ГВС (1 контур)	ИО*
39	Nshb_gvs_u	Количество установлен- ных шайб на ГВС, шт	Задается пользователем количество установлен- ных шайб на ГВС (1 кон- тур)	ИО*
40	dHshb_gvs	Потери напора на шайбе ГВС, м	Определяется в результа- те расчета	Р
41	Thv	Температура холодной воды,°С	Задается пользователем температура холодной во- допроводной воды	ИО
42	Tgv	Температура воды на ГВС,°С	Задается температура во- ды поступающей в систе- му горячего водоснабже- ния.	ИО
43	Hgv2_ras	Располагаемый напор 2 контура ГВС, м	Для закрытых систем го- рячего водоснабжения за- дается располагаемый на- пор во втором контуре	ИО
44	Hgv2_obr	Напор в обратнике 2 кон- тура ГВС, м	Для закрытых систем го- рячего водоснабжения за- дается напор в циркуля- ционном трубопроводе во второго контура	ИО
45	Thv_t	Текущая температура хо- лодной воды, °С	Для закрытых систем го- рячего водоснабжения за- дается текущая темпера- тура холодной воды на входе второго контура	ИО*
46	Nsec_niz	Количество секций ТО ГВС I ступень	Задается пользователем количество секций ТО 1ой (нижней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
47	Ngr_niz	Количество паралл. групп ТО ГВС I ступень	Задается количество па- раллельных групп ТО 1ой (нижней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
48	Hsec_niz	Потери напора в одной секции I ступени, м	Задаются потери напора в одной из секций ТО 1ой	ИО

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			(нижней) ступени на ГВС	
			например, 1 метр.	
49	T11_i_niz	Исп. температура на входе 1 контура I ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на входе пер- вого контура Іой (нижней) ступени. Об испытатель-	ИО
			ных параметрах ТО <u>1 ла-</u> ва 8, Испытательные па- раметры теплообменно- го аппарата	
50	T12_i_niz	Исп. температура на вы- ходе 1 контура I ступени, °С	При наличии результа- тов замеров, задается ис- пытательная температура теплоносителя на выходе первого контура Іой (ниж- ней) ступени. Об испы- тательных параметрах ТО Глава 8, Испытательные параметры теплообмен- ного аппарата	ИО
51	T21_i_niz	Исп. температура на входе 2 контура I ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на входе вто- рого контура Іой (нижней) ступени. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
52	T22_i_niz	Исп. температура на вы- ходе 2 контура I ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на выходе вто- рого контура Іой (нижней) ступени. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
53	Q_i_niz	Исп. тепловая нагрузка I ступени, Гкал/час	При наличии результатов замеров задается тепло- вая нагрузка Іой (ниж- ней) степени теплообмен- ного аппарата. Об испы- тательных параметрах ТО	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			Глава 8, Испытательные параметры теплообмен- ного аппарата	
54	Gniz	Расход 1 контура I ступе- ни ТО ГВС, т/ч	Определяется в результа- те расчета	Р
55	G2_niz	Расход 2 контура I ступе- ни ТО ГВС, т/ч	Определяется в результа- те расчета	Р
56	Q_niz	Тепловая нагрузка I сту- пени, Гкал/час	Определяется в результа- те расчета	Р
57	T11_niz	Температура на входе 1 контура I ступени, °С	Определяется в результа- те расчета	Р
58	T12_niz	Температура на выходе 1 контура I ступени, °С	Определяется в результа- те расчета	Р
59	T21_niz	Температура на входе 2 контура I ступени, °С	Определяется в результа- те расчета	Р
60	T22_niz	Температура на выходе 2 контура I ступени, °С	Определяется в результа- те расчета	Р
61	Nsec_verh	Количество секций ТО ГВС II ступень	Задается пользователем количество секций ТО 2ой (верхней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
62	Ngr_verh	Количество паралл. групп ТО ГВС II ступень	Задается количество па- раллельных групп ТО 2ой (верхней) ступени на ГВС например, 1, 2, 3 и т.д.	ИО
63	Hsec_verh	Потери напора в одной секции II ступени, м	Задаются потери напора в одной из секций ТО 2ой (верхней) ступени на ГВС например, 1 метр.	ИО
64	T11_i_verh	Исп. температура на входе 1 контура II ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на входе пер- вого контура II (верхней) ступени. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
65	T12_i_verh	Исп. температура на вы- ходе 1 контура II ступени, °С	При наличии результа- тов замеров, задается ис- пытательная температура теплоносителя на выходе первого контура II (верх- ней) ступени. Об испы- тательных параметрах ТО	ИО

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			Глава 8, Испытательные параметры теплообмен- ного аппарата	
66	T21_i_verh	Исп. температура на входе 2 контура II ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на входе вто- рого контура II (верхней) ступени. Об испытатель- ных параметрах ТО <u>Гла-</u> ва 8, Испытательные па- раметры теплообменно- го аппарата	ИО
67	T22_i_verh	Исп. температура на вы- ходе 2 контура II ступени, °С	При наличии результатов замеров, задается испыта- тельная температура теп- лоносителя на выходе вто- рого контура II (верхней) ступени. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
68	Q_i_verh	Исп. тепловая нагрузка верхней ступени, Гкал/час	При наличии результатов замеров задается тепло- вая нагрузка второй сте- пени теплообменного ап- парата. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
69	T11_verh	Температура на входе 1 контура II ступени, °С	Определяется в результа- те расчета	Р
70	T12_verh	Температура на выходе 1 контура II ступени, °С	Определяется в результа- те расчета	Р
71	T21_verh	Температура на входе 2 контура II ступени, °С	Определяется в результа- те расчета	Р
72	T22_verh	Температура на выходе 2 контура II ступени, °С	Определяется в результа- те расчета	Р
73	Gverh	Расход 1 контура II ступе- ни ТО ГВС, т/ч	Определяется в результа- те расчета	Р
74	G2_verh	Расход 2 контура II ступе- ни ТО ГВС, т/ч	Определяется в результа- те расчета	Р
75	Q_verh	Тепловая нагрузка II сту- пени, Гкал/час	Определяется в результа- те расчета	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
76	Gset_nal	Расход сетевой воды на квартал после наладки, т/ч	Определяется в результа- те расчета	Р
77	Qo_t	Подключенная нагрузка на отопление, Гкал/ч	Определяется в результа- те расчета по подключен- ной нагрузке квартала.	Р
78	Qsv_t	Подключенная нагрузка на вентиляцию, Гкал/ч	Определяется в результа- те расчета по подключен- ной нагрузке квартала.	Р
79	Qgv_t	Подключенная нагрузка на ГВС, Гкал/ч	Определяется в результа- те расчета по подключен- ной нагрузке квартала.	Р
80	Gsum_pod	Суммарный расход сете- вой воды, т/ч	Определяется в результа- те расчета	Р
81	H_ras	Располагаемый напор на вводе ЦТП, м	Определяется в результа- те расчета	Р
82	H_pod	Напор в подающем трубо- проводе, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в по- дающем трубопроводе (1 контур), м	Р
83	H_obr	Напор в обратном тр-де на вводе ЦТП, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в об- ратном трубопроводе (1 контур), м	Р
84	Ppod	Давление в подающем трубопроводе, м	Определяется в результа- те расчета напор (без уче- та геодезии) в подающем трубопроводе (1 контур), м	Р
85	Pobr	Давление в обратном тру- бопроводе, м	Определяется в результа- те расчета напор (без уче- та геодезии) в обратном трубопроводе (1 контур), м	Р
86	Hout_pod	Напор в подающем тр-де 2 контура ЦТП, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в по- дающем тр-де (2 контур ЦТП), м	P
87	Hgv_pod	Напор в под.тр-де ГВС, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в по- дающем тр-де ГВС (2 кон- тур), м	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
88	Hgv_obr	Напор в обр.тр-де ГВС, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в об- ратном тр-де ГВС (2 кон- тур), м	Р
89	Pout_pod	Давление в под.тр-де, м	Определяется в результа- те расчета напор (без уче- та геодезии) в подающем тр-де (2 контур ЦТП), м	Р
90	Pgv_pod	Давление в под.тр-де ГВС, м	Определяется в результа- те расчета напор (без уче- та геодезии) в подающем тр-де ГВС (2 контур), м	Р
91	Pgv_obr	Давление в обр.тр-де ГВС, м	Определяется в результа- те расчета напор (без уче- та геодезии) в обратном тр-де ГВС (2 контур), м	Р
92	Pout_obr	Давление в обр.тр-де, м	Определяется в результа- те расчета напор (без уче- та геодезии) в обратном тр-де (2 контур ЦТП), м	Р
93	Hout_obr	Напор в обратном тр-де 2 контура ЦТП, м	Определяется в результа- те расчета полный напор (с учетом геодезии) в об- ратном тр-де (2 контур ЦТП), м	Р
94	Gperem	Расход воды по перемыч- ке, т/ч	Определяется в результа- те расчета	Р
95	Tvso_r	Расчетная температура внутр. воздуха для CO, °C	Задается расчетное значе- ние температуры воздуха внутри отапливаемых по- мещений при проектиро- вании системы отопления, например 20, 18, 16 или 10°С	ИО
96	Qgv_sred	Расчетная средняя нагруз- ка на ГВС, Гкал/ч	Задается пользователем по проектным данным. При отсутствии проект- ных данных расчетные тепловые нагрузки на го- рячее водоснабжение мо- гут быть определены по количеству потребителей горячего водоснабжения, в соответствии с указа- ниями СНиП. Нагрузка может быть задана как	ИО

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			в Гкал/ч так и в МВт. Как изменить единицы измерений смотрите <u>Раз-</u> дел 9.11, «Настройка ис- пользуемых единиц изме- рения».	
97	Regul_T	Наличие регулятора на ГВС	Указывается признак на- личия регулятора темпе- ратуры на систему горяче- го водоснабжения: 0 (или пусто)- отсутству- ет; 1- установлен регулятор температуры.	ИО
98	КЪ	Балансовый коэффициент закр.ГВС	Значение этого поля используется при определении балансовой нагрузки в наладочном расчете для закрытых схем ГВС. Балансовая нагрузка определяется как средняя нагрузка ГВС, умноженная на балансовый коэффициент. Коэффициент позволяет пользователю регулировать величину нагрузки (и расхода) на которую производится наладка. Если значение поля не задано или само поле в структуре отсутствует, расчет берет значение коэффициента по умолчанию: 1.15 для одноступенчатой смешанной; 1.25 для двухступенчатой последовательной.	ИО
99	Regul_G	Способ дросселирования на ЦТП	Указывается способ дрос- селирования на ЦТП циф- рой от 0 до 6.	ИО

N⁰	Имя поля	Наименование поля	Информация, записыва-	Тип
			емая в поле	
			0- дросселирование на	
			ЦТП не производится, ес-	
			ли это не является обяза-	
			тельным;	
			1- дросселируется вы-	
			ход из ЦТП на отопле-	
			ние, шайба устанавлива-	
			ется всегда на подающем	
			трубопроводе;	
			2- дросселируется вы-	
			ход из ЦПП на отопле-	
			ние, шайба устанавлива-	
			ется всегда на обратном	
			трубопроводе;	
			3 IDOCCOTHINNATOR DUNCT	
			з- дросселируется выход	
			из цтп на отопление, ме-	
			ета установки шано опре-	
			деляются автоматически,	
			4- устанавливаются шай-	
			бы на вводе в ЦТП (общие	
			на отопление и ГВС), ме-	
			ста установки шайб опре-	
			деляются автоматически;	
			5- устанавливаются шай-	
			бы на вводе в ЦТП (общие	
			на отопление и ГВС), шай-	
			ба устанавливается всегда	
			на подающем трубопрово-	
			де;	
			бы на вволе в ИТП (общие)	
			иа отопление и ГРС) шей	
			ба устанавливается всегла	
			на обратном трубопрово-	
			ле	
			7- установлена систе-	
			ма погодного регулиро-	
			вания, поддерживающая	
			температуру внутреннего	
			воздуха (при независи-	
			мых схемах присоедине-	
			ния СО).	
100	Hzapas	Запас напора при люссе-	Задается пользователем	ИО
	r	лировании, м	запас напора при дроссе-	

№	Имя поля	Наименование поля	Информация, записыва-	Тип
			лировании, например 1, 2 м.	
101	Tnv_r	Расчетная температура наружного воздуха, °С	Задается расчетное зна- чение температуры на- ружного воздуха, которое принимается в соответ- ствии со СНиП, напри- мер-30,- 35°С	ИО
102	Tnv_t	Текущая температура на- ружного воздуха, °С	Задается пользователем текущая температура наружнего воздуха, например 8,0-10-26 °C	ИО*
103	Tsg_pod	Среднегодовая темпера- тура воды в под. тр-де,°С	Задается пользователем среднегодовая температура воды в под. тр-де после ЦТП	ИО**
104	Tsg_obr	Среднегодовая темпера- тура воды в обр. тр-де,°С	Задается пользователем среднегодовая температура воды в обр. тр-де после ЦТП	ИО**
105	Tsg_grunt	Среднегодовая темпера- тура грунта, °С	Задается пользователем среднегодовая температу- ра грунта	ИО**
106	Tsg_nv	Среднегодовая темпера- тура наружного возду- ха,°С	Задается пользователем среднегодовая температура наружного воздуха	ИО**
107	Tsg_podval	Среднегодовая темпера- тура воздуха в подва- лах,°С	Задается пользователем среднегодовая температу- ра воздуха в подвалах	ИО**
108	Tgrunt	Текущая температура грунта,°С	Задается пользователем значение текущей темпе- ратуры грунта	ИО**
109	Tpodval	Текущая температура воз- духа в подвалах,°С	Задается пользователем значение текущей темпе- ратуры воздуха в подва- лах	ИО**
110	Gsum_pod2	Суммарный расход воды во 2 контуре ЦТП, т/ч	Определяется в результа- те расчета	Р
111	Qverh	Тепловая нагрузка верх- ней ступени ТО ГВС, Гкал/ч	Определяется в результа- те расчета	Р
112	Qniz	Тепловая нагрузка ниж- ней ступени ТО ГВС, Гкал/ч	Определяется в результа- те расчета	Р
113	Qut_pod	Потери тепла от утечек в подающем тр-де, Ккал/ч	Определяются в результа- те расчета потери тепла от	Р

N⁰	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
			утечек в подающем тр-де (2 контур), Ккал/ч	
114	Qut_obr	Потери тепла от утечек в обратном тр-де, Ккал/ч	Определяются в результа- те расчета потери тепла от утечек в обратном тр-де (2 контур), Ккал/ч	Р
115	Qut_potr	Потери тепла от утечек в сист. теплопотреб., Ккал/ч	Определяется в результа- те расчета	Р
116	T11_i	Исп. температура воды на входе 1 контура, °С	Задается температура во- ды на входе 1 контура си- стемы отопления по ре- зультатам испытаний, ес- ли испытания не проводи- лись, задается проектное значение. Об испытатель- ных параметрах ТО <u>Гла-</u> ва 8, <i>Испытательные па-</i> <i>раметры теплообменно-</i> <i>го аппарата</i>	ИО
117	T12_i	Исп. температура воды на выходе 1 контура, °С	Задается температура во- ды на выходе 1 контура системы отопления по ре- зультатам испытаний, ес- ли испытания не проводи- лись, задается проектное значение. Об испытатель- ных параметрах ТО <u>Гла-</u> ва 8, Испытательные па- раметры теплообменно- го аппарата	ИО
118	T21_i	Исп. температура воды на входе 2 контура, °С	Задается температура во- ды на входе 2 контура си- стемы отопления по ре- зультатам испытаний, ес- ли испытания не проводи- лись, задается проектное значение. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
119	T22_i	Исп. температура воды на выходе 2 контура, °С	Задается температура во- ды на выходе 2 контура системы отопления по ре- зультатам испытаний, ес- ли испытания не проводи- лись, задается проектное значение. Об испытатель-	ИО

Nº	№ Имя поля Наименование поля		Информация, записыва-	Тип
			ных параметрах ТО <u>Гла-</u> ва 8, Испытательные па- раметры теплообменно- го аппарата	
120	G1_i	Исп. расход 1 контура, т/ч	Задается пользователем испытательный расход 1 контура системы отопле- ния по результатам ис- пытаний. Об испытатель- ных параметрах ТО <u>Гла- ва 8, Испытательные па- раметры теплообменно- го аппарата</u>	ИО
121	G2_i	Исп. расход 2 контура, т/ч Задается пользователем испытательный расход 2 контура системы отопления по результатам испытаний. Об испытательных параметрах ТО Глава 8, Испытательные параметры теплообменно-го аппарата		ИО
122	Qsum	Суммарная тепловая на- грузка на ЦТП, Гкал/ч	Определяется в результа- те расчетов	Р
123	Qts_pod	Тепловые потери в подаю- щем тр-де, Ккал/ч	Определяются тепловые потери в подающем тр-де (2 контур), Ккал/ч	Р
124	Qts_obr	Тепловые потери в обрат- ном тр-де, Ккал/ч	Определяются тепловые потери в обратном тр-де (2 контур), Ккал/ч	Р
125	Gut_pod	Расход воды на утечки из Определяется в результа- под. тр-да, т/ч те расчетов расход воды на утечки из под. тр-да (2 контур), т/ч		Р
126	Gut_obr	Расход воды на утечки из Определяется в результа- обр. тр-да, т/ч те расчетов расход воды на утечки из обр. тр-да (2 контур), т/ч		Р
127	Gut_potr	Расход воды на утечки из Определяется в результа- систем теплопотреб., т/ч те расчетов расход воды на утечки из систем тепло- потреб., т/ч		Р
128	Time	Время прохождения воды от источника, мин	Определяется в результа- те расчета	Р
129	Dist	Путь, пройденный от ис- точника, м	Определяется в результа- те расчета	Р

№	Имя поля	Наименование поля	Информация, записыва- емая в поле	Тип
130	Ть	Давление вскипания, м	Определяется в результа- те расчета напор (без уче- та геодезической отметки) критический (вскипания) на входе, м	Р
131	Tb_out	Давление вскипания на выходе ЦТП, м	Определяется в результа- те расчета напор (без уче- та геодезической отметки) критический (вскипания) на выходе ЦТП, м	Р
132	Hstat	Статический напор на входе, м	Определяется в результа- те расчета	Р
133	Hstat_out	Статический напор на вы- ходе ЦТП, м	Определяется в результа- те расчета	Р

24.9. Перемычка

N⁰	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
1	Name	Name Название Записывается наименовал перемычки например, со ветствующее месту ее ус новки		ИО
2	Nist	Номер источника	Определяется в результате расчета	Р
3	H_geo	Геодезическая отметка Задается отметка оси (верха) трубы, где установлена пере- мычка. Она может автомати- чески быть считана со слоя рельефа (Раздел 19.3, «Авто- матическое занесение геоде- зических отметок объектов сети со слоя рельефа»).		
4	Lper	Длина перемычки, м	Задается пользователем дли- на перемычки, например, 1 м.	ИО
5	Dper	Диаметр перемычки, м	Задается пользователем диа- метр перемычки, например, 0.1 м.	ИО
6	Zper	Коэф. местных сопротивле- ний	Задается пользователем ко- эффициент местных сопро- тивлений перемычки, в зави- симости от тех устройств ко- торые установлены на пере- мычке.	ИО

Nº	Имя поля	Наименование поля	Информация, записывае- мая в поле	Тип
7	Kper	Шероховатость, мм	Задается пользователем шероховатость перемычки, например 1, 2, 4 и т.д. мм.	ИО
8	Sper	Сопротивление, м*ч2/т2	Задается пользователем рас- четное сопротивление пере- мычки. В этом случае значе- ния полей длины, диаметра, шероховатости и коэффици- ента местных сопротивлений не учитываются.	ИО
9	Gperem	Расход воды по перемычке, т/ч	Определяется в результате расчета	Р
10	H_ras	Располагаемый напор, м	Определяется в результате расчета	Р
11	H_pod	Напор в подающем трубо- проводе, м	Определяется в результате расчета	Р
12	H_obr	Напор в обратном трубопро- воде, м	Определяется в результате расчета	Р
13	Ppod	Давление в подающем тру- бопроводе, м	Определяется в результате расчета	Р
14	P_obr	Давление в обратном трубо- проводе, м	Определяется в результате расчета	Р
15	Time	Время прохождения воды от источника, мин	Определяется в результате расчета	Р
16	Dist	Путь, пройденный от источ- ника, м	Определяется в результате расчета	Р
17	Tb	Давление вскипания, м	Определяется в результате расчета	Р
18	Hstat	Статический напор, м	Определяется в результате расчета	Р
19	Hstat_out	Статический напор на выхо- де, м	Определяется в результате расчета	Р
20	Tpod	Температура в подающ. тру- бопроводе, °С	Определяется в результате расчета	Р
21	Tobr	Температура в обратном тру- бопроводе,°С	Определяется в результате расчета	Р

24.10. Обобщенный потребитель

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
1	Name	Наименование узла	Задается пользователем, напри- мер Квартал № 11	ИН

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
2	Nist	Номер источника	Определяется в результате расче- та	Р
3	H_geo	Геодезическая отметка, м	Задается отметка оси (верха) тру- бы, данного узла ввода. Она мо- жет автоматически быть счита- на со слоя рельефа (<u>Раздел 19.3</u> , <u>«Автоматическое занесение гео- дезических отметок объектов се- ти со слоя рельефа»).</u>	ИО
4	N_schem	Способ задания нагрузки	Выбирается из списка способ за- дания нагрузки: расходом или со- противлением. 0 (или пусто)- задается расходом 1- задается расчетным сопротив-	ИО
5	Gpod	Расход на СО,СВ и закр.системы ГВС, т/ч	лением Задается суммарная величина расхода на системы отопления, вентиляции и закрытой системы ГВС, для данного потребителя. Данное значение необходимо указывать только в том случае, если в поле Способ задания на- грузки установлено Задается рас- ходом	ИО
6	Kso	Коэфф.изменения расхода на СО,СВ и закр.системы ГВС	Задается пользователем в случае необходимости увеличения рас- хода на СО, СВ и закр. ГВС по сравнению с расчетным значени- ем, например, 1.1, 1.2 и т.д. В этом случае расчетное значение будет увеличено соответственно на 10 или 20%	ИО
7	Gu_r	Расход на открытый водоразбор, т/ч	Задается величина расхода на от- крытый водоразбор	ИО
8	Kgv	Коэфф.изменения расхода на от- крытый водоразбор	Задается пользователем в случае необходимости увеличения рас- хода на открытый водоразбор по сравнению с расчетным значени- ем, например, 1.1, 1.2 и т.д. В этом случае расчетное значение будет увеличено соответственно на 10 или 20%	ИО
9	Beta	Доля водоразбора из подающего тр-да	Указывается доля открытого во- доразбора из подающего трубо-	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
			провода, например 0.4 это 40% водоразбора из под. тр-да	
10	Pmax_obr	Максимальное давление в обрат- ном тр-де, м	Указывается максимально допу- стимое давление в обратном тру- бопроводе на потребителе. В слу- чае если поле не задано исполь- зуется значение и настроек расче- тов.	ИО
11	Sr	Расчетное обобщенное сопротив- ление, м/(т/ч)^2	Указывается величина предвари- тельно рассчитанного обобщен- ного сопротивления. Данное значение необходимо указывать только в том случае, если Способ задания нагрузки установлен Задается сопротивле- нием	ИО
12	Н	Требуемый напор, м	Задается требуемый располагае- мый напор на обобщенном потре- бителе, например 10, 15, 20 и т.д. метров	ИО
13	Hzdan	Минимальный статический на- пор, м	Задается минимальный статиче- ский напор на обобщенном по- требителе, например 10, 15, 20 и т.д. метров	ИО
14	Tobr_type	Способ определения температу- ры обр. воды	Задается цифрой способ определения температуры: 0 (или пусто)-по отопительной формуле; 1- по фактической температуре. Для учета фактической темпера- туры в различных расчетах сле- дует включить эту опцию в на- стройках расчетов (<u>Раздел 9.8</u> , «Настройка использования ис- ходных данных»).	ИО
15	Tobr_val	Фактическая температура обр. воды,°С	Указывается фактическая температура воды на выходе из обобщенного потребителя. Для учета фактической температуры в различных расчетах следует включить эту опцию в настройках расчетов (Раздел 9.8, «Настройка использования исходных данных»).	ИО

№	Имя поля	Наименование поля	Информация, записываемая в поле	Тип
16	H_ras	Располагаемый напор, м	Определяется в результате расче- та	Р
17	H_pod	Напор в подающем трубопрово- де, м	Определяется в результате расче- та	Р
18	H_obr	Напор в обратном тр-де, м	Определяется в результате расче- та	Р
19	Ppod	Давление в подающем трубопро- воде, м	Определяется в результате расче- та	Р
20	Pobr	Давление в обратном трубопро- воде, м	Определяется в результате расче- та	Р
21	Time	Время прохождения воды от источника, мин	Определяется в результате расче- та	Р
22	Dist	Путь, пройденный от источника, м	Определяется в результате расче- та	Р
23	Tb	Давление вскипания, м	Определяется в результате расче- та	Р
24	Hstat	Статический напор, м Определяется в результате раста		Р
25	Hstat_out	ut Статический напор на выходе, м Определяется в результате та		Р
26	Tpod	Температура воды в подающем трубопроводе, °С	Определяется в результате расче- та	Р
27	Tobr	Температура воды в обратном трубопроводе, °С	Определяется в результате расче- та	Р
28	St	Обобщенное сопротивление, м/ (т/ч)^2	Определяется в результате расче- та	Р
29	Gu_t	Расход воды на открытый водо- разбор, т/ч	Определяется в результате расче- та	Р
30	Gt_pod	Расход воды в подающем тр-де, т/ч	Определяется в результате расче- та	Р
31	Gt_obr	Расход воды в обратном тр-де, т/ч	Определяется в результате расче- та	Р
32	Tvso_r Расчетная темп. внутреннего воз- духа для CO,°C Задается расчетное зна пературы воздуха вну- ваемых помещений.		Задается расчетное значение тем- пературы воздуха внутри отапли- ваемых помещений.	ИО*
33	Beta_nad	Коэффициент тепловой аккуму- ляции, ч	Указывается коэффициент теп- ловой аккумуляции потребителя.	ИО*
34	Tmin_nad	Минимально допустимая темпе- ратура,°С	Указывается минимально допу- стимая температура внутреннего воздуха у потребителя, на время устранения аварии.	ИО*
35	R_nad	Вероятность безотказной работы	Определяется в результате расче- та надежности.	Р

№	Имя поля	Наименование поля	Информация, записываемая н	
			поле	
36	K_nad	Коэффициент готовности	Определяется в результате расче- та надежности.	Р
37	Qlost_nad	Средний суммарный недоотпуск теплоты, Гкал/от. период	Определяется в результате расче- та надежности.	Р

Глава 25. Формулы

25.1. Введение

В данном разделе представлены формулы, используемые программой ZuluThermo. Этот раздел будет расширяться, однако сейчас в этом разделе представлены лишь некоторые зависимости. По всем формулам, отсутствующим в данном разделе Вы можете обратиться к разработчикам для уточнения.

25.2. Определение расчетных расходов теплоносителя

Расчетный расход сетевой воды на систему отопления (т/ч), присоединенную по зависимой схеме, можно определить по формуле:

$$G_{c.p.} = \frac{Q_{.c.p.} \cdot 1000}{C \cdot (\tau_{1.p.} - \tau_{2.p.})}$$

Рисунок 25.1. Расчетный расход сетевой воды на СО

- где Qo.p.- расчетная нагрузка на систему отопления, Гкал/ч;
- τ1.р.- температура воды в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, ° С;
- т2.р.- температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °С;

Расчетный расход воды в системе отопления определяется из выражения:

$$G_{c.o.p.} = \frac{Q_{o.p.} \cdot 1000}{C \cdot (\tau_{3,p.} - \tau_{2,p.})}$$

Рисунок 25.2. Расчетный расход воды в системе отопления

• т3.р.- температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, ° С;

Относительный расход сетевой воды Goth. на систему отопления:

$$G_{omh} = \frac{G_{c.}}{G_{c.p.}}$$

Рисунок 25.3. Относительный расход сетевой воды на СО

• где Gc.- текущее значение сетевого расхода на систему отопления, т/ч.

Относительный расход тепла Qотн. на систему отопления:

Рисунок 25.4. Относительный расход тепла на СО

- где Qo.- текущее значение расхода теплоты на систему отопления, Гкал/ч
- где Qo.p.- расчетное значение расхода теплоты на систему отопления, Гкал/ч

Расчетный расход теплоносителя в системе отопления присоединенной по независимой схеме:

$$G_{c.o.} = \frac{Q_{o.p.} \cdot 1000}{C \cdot (t_{1.p.} - t_{2.p.})}$$

Рисунок 25.5. Расчетный расход на СО по независимой схеме

• где: t1.p, t2.p.- расчетная температура нагреваемого теплоносителя (второй контур) соответственно на выходе и входе в теплообменный аппарат, °С;

Расчетный расход теплоносителя в системе вентиляции определяется по формуле:

$$G_{c.6.} = \frac{Q_{6.p.} \cdot 1000}{C \cdot (\tau_{1.p.} - \tau_{2.6.p.})}$$

Рисунок 25.6. Расчетный расход на СВ

• где: Qв.р.- расчетная нагрузка на систему вентиляции Гкал/ч;

• т2.в.р.- расчетная температура сетевой воды после калорифера системы вентиляции, °С.

Расчетный расход теплоносителя на систему горячего водоснабжения (ГВС) для открытых систем теплоснабжения определяется по формуле:

$$G_{\mathcal{BC}.p.} = \frac{Q_{\mathcal{BC}.}^{cp.} \cdot 1000}{\mathcal{C} \cdot (t_{\mathcal{B}.} - t_{xg.})}$$

Рисунок 25.7. Расчетный расход на открытые системы ГВС

Расход воды на горячее водоснабжение из подающего трубопровода тепловой сети:

$$G_{n,rec.} = \beta \cdot G_{rec.p.}$$

Рисунок 25.8. Расход на ГВС из подающего

• где: β- доля отбора воды из подающего трубопровода, определяемая по формуле:

$$\beta = \frac{t_{26.} - \tau_{2.}}{\tau_{1.} - \tau_{2.}}$$

Рисунок 25.9. Доля отбора воды из подающего

Расход воды на горячее водоснабжение из обратного трубопровода тепловой сети:

$$G_{0.26C.} = (1 - \beta) \cdot G_{26C.p.}$$

Рисунок 25.10. Расход на ГВС из обратного

Расчетный расход теплоносителя (греющей воды) на систему ГВС для закрытых систем теплоснабжения при параллельной схеме включения подогревателей на систему горячего водоснабжения:

$$G_{\rm 2BC.p.} = \frac{Q_{\rm 2BC.p.} \cdot 1000}{\mathcal{C} \cdot (\tau_{1.u.} - \tau_{2.m.u.})}$$

Рисунок 25.11. Расход на ГВС 1 контура при параллельной схеме

- где: τ1.и.- температура сетевой воды в подающем трубопроводе в точке излома температурного графика, °C;
- т2.т.и.- температура сетевой воды после подогревателя в точке излома температурного графика (принимается = 30 °C);

Расчетная нагрузка на ГВС

При наличии баков аккумуляторов

$$Q_{\rm PBC.p.} = Q_{\rm PBC.}^{\rm cp.}$$

Рисунок 25.12.

При отсутствии баков аккумуляторов

$$Q_{26C.p.} = Q_{26C.}^{\max}$$

Рисунок 25.13.

25.3. Скорость, потери напора, сопротивления

$$V_{y_{u_{.}}} = \frac{G_{y_{u_{.}}} \cdot 4}{3, 6 \cdot 3, 14 \cdot d_{y_{u_{.}}}^{2}}$$

Рисунок 25.14. Скорость движения воды

Потери напора на участке трубопровода определяются по формуле:

$$\Delta H_{y_{u.}} = \lambda \cdot \frac{l_{y_{u.}}}{d_{g_{H.}}} \cdot \frac{V_{y_{u.}}^2}{2 \cdot g}$$

Рисунок 25.15. Потери напора на участке

• Где λ- коэффициент гидравлического сопротивления.

Коэффициент гидравлического сопротивления может быть определен по формуле Колбрука-Уайта:

$$\lambda = \left[-2 \cdot \lg \left(\frac{2.51}{\operatorname{Re} \cdot \sqrt{\lambda}} + \frac{k_{\text{\tiny JK.}}}{3.7 \cdot d_{\text{\tiny GH.}}} \right) \right]^{-2}$$

Рисунок 25.16. Формуле Колбрука-Уайта

Либо по экспериментальным данным по формуле Прандтля- Никурадзе

$$\frac{1}{\lambda} = c \cdot \lg a \frac{d_{GH.}}{k_{JK.}} = c \cdot \lg \frac{d_{GH.}}{k_{JK.}} + b$$

Рисунок 25.17. Формула Прандтля-Никурадзе

Где с=2.0, а=3.7, b=1.14

Или по формуле Б.Л. Шифринсона

$$\lambda = 0,11 \cdot \left(\frac{k_{\text{SK}}}{d_{\text{BH}}}\right)^{0.25}$$

Рисунок 25.18. Формула Шифринсона

Или по формуле А.Д. Альтшуля

$$\lambda = 0,11 \cdot \left(\frac{k_{\text{\tiny 3K.}}}{d_{\text{\tiny 6H.}}} + \frac{68}{\text{Re}}\right)^{0.25}$$

Рисунок 25.19. Формула Альтшуля

Потери напора на потребителях определяется по формуле

$$\Delta H_{nom.} = S_{nom.} \cdot G_{nom.}^2$$

Рисунок 25.20. Потери напора на потребителе

где: Ѕпот- сопротивление потребителя, м/(т/час)2

Для элеваторного присоединения системы отопления находится как сумма сопротивления трубопроводов СО и сопротивления сопла элеватора:

$$S_{co.mp.} = \frac{\Delta H_{co.}}{G_c^2 \cdot (1+u)^2}$$

Рисунок 25.21. Потери напора на потребителе

- где Gc- расчетный расход сетевой воды (из тепловой сети) на систему отопления, т/ч.

Сопротивление элеваторного узла определяется по формуле:

$$S_{\text{sn.}} = \left(\frac{9,6}{d_c}\right)^4$$

Рисунок 25.22. Сопротивление элеваторного узла

Общее сопротивление системы отопления определяется по формуле:

$$S_{\text{co.}} = S_{\text{co.mp.}} + S_{\text{эл.}}$$

Рисунок 25.23. Общее сопротивление СО

Для независимой схемы присоединения системы отопления, сопротивление трубного пространства теплообменного аппарата определяется по формуле:

$$S_{mo.co.} = \frac{\Delta H_{mo.co.}}{G_{mo.co.}^2}$$

Рисунок 25.24. Сопротивление СО при незав. схеме

- ∆Нто.со.- испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;
- GTO.CO.- испытательный (расчетный) расход теплоносителя в трубном пространстве тепло-обменников СО, т/час.

Сопротивление теплообменников ГВС определяются по аналогичной формуле

Сопротивление системы вентиляции определяется по формуле:

$$S_{CG.} = \frac{\Delta H_{CG.}}{G_{CG.}^2}$$

Рисунок 25.25. Сопротивление системы вентиляции

- Gcв.- расчетный расход воды в системе вентиляции (CB), т/ч.

Суммарное сопротивление потребителя вычисляется в зависимости от типа схемного решения по правилу определения сопротивления последовательно (параллельно) со-единенных элементов.

25.4. Расчёт элеваторного узла и дросселирующих устройств

Диаметр горловины элеватора определяется по формуле

$$d_{z} = 8.5 \cdot \sqrt[4]{\frac{G_{c}^{2} \cdot (1+u)^{2}}{\Delta H_{co}}}$$

Рисунок 25.26. Диаметр горловины элеватора

- где Gc- расчетный расход сетевой воды (из тепловой сети) на систему отопления, т/ч
- u- расчетный коэффициент смешения определяемый по формуле

$$u = \frac{\tau_{1.p.} - \tau_{3.p.}}{\tau_{3.p.} - \tau_{2.p.}}$$

Рисунок 25.27. Расчетный коэффициент смешения

- Qo.p.- расчетный тепловой поток на отопление, Гкал/ч;
- с- удельная теплоемкость воды, ккал/(ч*кг*°С);
- τ1.р.- температура воды в подающем трубопроводе тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, °C;
- т3.р.- температура воды в подающем трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °C;

- т2.р.- температура воды в обратном трубопроводе системы отопления при расчетной температуре наружного воздуха для проектирования отопления, °C;
- При выборе элеватора принимается стандартный элеватор с ближайшим меньшим диаметром горловины. Номера элеваторов и диаметр горловины приведены в таблице ниже

Таблица 25.1. Номера элеваторов и диаметры горловины

№ элеватора	1	2	3	4	5	6	7
D горловины, мм	15	20	25	30	35	47	59

Минимально необходимый напор ∆Н эл.мин, м, перед элеватором для преодоления гидравлического сопротивления элеватора и присоединенной к нему системы отопления (без учета гидравлического сопротивления трубопроводов, оборудования, приборов и арматуры до места присоединения элеватора) определяется по формуле:

$$\Delta H_{\text{3.7.min.}} = 1,4 \cdot \Delta H_{co} \cdot (1+u)^2$$

Рисунок 25.28. Минимально необходимый напор перед элеватором

Диаметр сопла элеватора dc, мм, определяется по формуле

$$d_c = 9, 6 \cdot \sqrt[4]{\frac{G_c^2}{\Delta H_{3.7.\text{min.}}}}$$

Рисунок 25.29. Диаметр сопла элеватора

Диаметр сопла определяется с точностью до десятых долей миллиметра с округлением в меньшую сторону и принимается при расчетах не менее 3 мм.

Диаметр отверстия дроссельной диафрагмы определяется по формуле:

$$d_{\partial p_{.}} = 10 \cdot \sqrt[4]{\frac{G_c^2}{\Delta H_{u_{3}}}}$$

Рисунок 25.30. Диаметр дроссельной диафрагмы

Минимальный диаметр отверстия дроссельной диафрагмы принимается равным 3 мм. При необходимости устанавливается последовательно несколько диафрагм соответственно с большими диаметрами отверстий.

Пересчет диаметра сопла элеватора при изменившемся коэффициенте смешения производится по формуле:

$$d_{c}^{*} = d_{c} \cdot \frac{1+u}{1+u^{*}}$$

Рисунок 25.31. Пересчет диаметра сопла элеватора

- где d*с- новый диаметр сопла, мм
- и*- новый коэффициент смешения.

Связь диаметра сопла с диаметром горловины и коэффициентом смешения можно выразить через зависимость:

$$d_{c} = \frac{10 \cdot d_{e}}{\sqrt{\frac{0,78}{G_{np.}^{2}} \cdot (1+u)^{2} \cdot d_{e}^{4} + 0,6 \cdot (1+u)^{2} - 0,4 \cdot u^{2}}}$$

Рисунок 25.32. Связь диаметра сопла с диаметром горловины и коэффициентом смешения

• где Gпр.-- приведенный расход смешанной воды (т/ч), определяемый по формуле:

$$G_{np.} = \frac{Q_{o.p.} \cdot 1000}{\sqrt{\Delta H_{co}} \cdot C \cdot (\tau_{3.p.} - \tau_{2.p.})}$$

Рисунок 25.33. Приведенный расход смешанной воды

Скорость движения воды на участке трубопровода определяется по формуле:

25.5. Поверочный расчет теплообменных аппаратов

Тепловой расчет абонентских вводов (схемы) связан с поверочным расчетом теплообменных аппаратов (TO) при переменных тепловых нагрузках. Эффективность работы TO зависит как от значений параметров теплоносителя (расхода и температуры), так и от состояния теплообменной поверхности (загрязнения трубок, накипь и др.). Ниже изложена краткая методика расчета TO с учетом указанных факторов.

Работу ТО описывает система уравнений теплового баланса и теплопередачи:

$$Q_{p} = \kappa \cdot F \cdot \Delta t_{cp} = G_{ep} \cdot C \cdot (\tau_{1ep} - \tau_{2ep}) = G_{hae} \cdot C \cdot (\tau_{1hae} - \tau_{2hae}), \quad Fkan/4$$

$$\Delta t_{cp.} = \frac{\Delta t_{s.} - \Delta t_{s.}}{\ln \frac{\Delta t_{s.}}{\Delta t_{s.}}}, \circ_{C}$$

$$\mathcal{K} = \frac{1}{\frac{1}{\alpha_{1}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{2}}}, _{KKAJ/(q*M^{2}*\circ C)};$$

$$\mathbf{W}^{0.8}$$

$$\alpha_1 = [1430 + 23.3 \cdot t_{cp.zp.} - 0.048 \cdot t_{cp.zp.}^2] \cdot \frac{W_{xomp.}^{0.8}}{d_{xks.}^{0.2}}, \text{ KKaJ/}(\Psi^*M^{2*\circ}C)$$

$$\alpha_{2} = [1430 + 23.3 \cdot t_{cp.\text{has}} - 0.048 \cdot t_{cp.\text{has}}^{2}] \cdot \frac{W_{\text{mp}}^{0.8}}{d_{e\text{h}}^{0.2}}, \text{ KKal/(4*M^{2*0}C)}$$

где F- поверхность теплообмена, м²;

k- коэффициент теплопередачи, ккал/(ч*м²*°С);

 $\Delta t_{cp.}$ - средне логарифмическая разность температур между греющей и нагреваемой водой;

δ- толщина стенки трубки, м;

λ- коэффициент теплопроводности стенки трубки;

 $\tau_{1.гр}$, $\tau_{2.гр}$, $\tau_{1.нагр}$, $\tau_{2.нагр}$ - температуры греющего и нагреваемого теплоносителя соответственно на входе и выходе из ТО, °С;

t _{ср.гр} и t _{ср.нагр}- средняя температура греющего и нагреваемого теплоносителя в TO, °C;

α₁- коэффициент теплоотдачи от греющей воды к стенкам трубок, ккал/(ч*м^{2*}°C);

α₂- коэффициент теплоотдачи от стенки трубки к нагреваемому теплоносителю, ккал/ (ч*м²*°С);

W _{мтр.}- скорость движения греющего теплоносителя в межтрубном пространстве, м/ с;

W _{тр.}- скорость движения нагреваемого теплоносителя в трубках, м/с;

d _{экв.}- эквивалентный диаметр межтрубного пространства ТО (диаметр трубок или эквивалентный диаметр межтрубного пространства, м;

d _{вн.}- внутренний диаметр трубок ТО, м;

G _{гр.}- расход греющего теплоносителя в ТО, т/ч;

G _{нагр.}- расход нагреваемого теплоносителя в ТО, т/ч;

Суть методики заключается в использовании безразмерных комплексов, характеризующих температурное и гидравлическое состояние ТО в некотором испытательном (расчетном) режиме. Тогда представление выше указанной системы уравнений для испытательного и текущего режимов в безразмерном виде позволяет определить фактические параметры рассчитываемого ТО для любого режима работы. Для составления безразмерных комплексов необходимы значения температур и расходов $\tau_{1,rp}$, $\tau_{2,rp}$, т_{1.нагр}, т_{2.нагр}, G _{гр.}, G _{нагр.} в испытательном или расчетном режиме и любые четыре величины из перечисленных в текущем режиме. Тогда остальные две неизвестные величины определятся из совместного решения уравнений в безразмерном виде.

25.6. Расчет итоговых значений (коммутационные задачи)

Итоговые значения для отключаемых объектов определяются следующим образом:

Объем воды в подающем и обратном трубопроводе

Суммируются объемы воды во всех попавших под отключение участков сети. Объем

каждого участка V_i вычисляется по формуле:

$$V_i = L_i \cdot D_i^2 \cdot \frac{\pi}{4}, \ \mathcal{M}^3$$

Рисунок 25.34. Объем воды в подающем и обратном трубопроводе

 D_i - длина участка, м; D_i - диаметр подающего (обратного) трубопровода, где, м

Расчетная нагрузка на отопление

Суммируются расчетные нагрузки на отопление по каждому потребителю

Расчетная нагрузка на вентиляцию

Суммируются расчетные нагрузки на вентиляцию по каждому потребителю

Расчетная нагрузка на ГВС

Суммируются расчетные средние нагрузки на ГВС по каждому потребителю

Объем внутренних систем теплопотребления

Объем внутренних систем теплопотребления рассчитывается исходя из следующей зависимости:

$$V_{cucm} = Q_{cucm} \cdot \nu, \ M^3$$

Рисунок 25.35. Объем внутренних систем теплопотребления

- Осист- расчетная тепловая нагрузка системы теплопотребления, Гкал/ч;
- V- удельный объем воды, принимаемый в зависимости от вида основного теплопотребляющего оборудования, (м3*ч)/Гкал.

Объем воды в системе отопления

Значения удельного объема воды (V) в системе отопления с радиаторами высотой 1000мм при различных перепадах температур:

	Пер	Перепад температур воды в системе теплопотребления, °С						
	95-70	110-70	130-70	140-70	150-70	180-70		
V	31	28.2	24.2	23.2	21.6	18.2		

Объем воды в системе вентиляции

Значения удельного объема воды (V) в системе вентиляции при различных перепадах температур:

	Перепад температур воды в системе теплопотребления, °С					
	95-70	110-70	130-70	140-70	150-70	180-70
V	8.5	7.5	6.5	6	5.5	4.4

Объем воды в системе ГВС

Удельный объем воды (V) на заполнение местных систем горячего водоснабжения при открытой системе теплоснабжения определяется из расчета (м3*ч)/Гкал.

Суммарный объем воды

Суммируются объем воды в подающем, обратном трубопроводе и объем воды внутренних систем теплопотребления.

25.7. Расчёт нормативных утечек

- Раздел 25.7.1, «Утечки из систем теплопотребления»
- Раздел 25.7.2, «Утечки на участках тепловой сети»

25.7.1. Утечки из систем теплопотребления

Величина непроизводительной нормативной часовой утечки из системы теплопотребления определяется по формуле:

$$\Delta G_{ym.cuc.} = \alpha \cdot V_{cuc.}, \mathbf{T}/\mathbf{q}$$

Рисунок 25.36. Утечка из системы теплопотребления

• α- нормируемая утечка сетевой воды, м³/(ч*м³). Доля нормативной утечки из систем теплопотребления указывается в настройках расчета (<u>Раздел 9.4</u>, «<u>Настройка</u> расчета утечек»).

• где V_{сис.}- объем системы теплопотребления, м³.

При отсутствии в проекте данных об объеме внутренних систем теплопотребления, а также в случае, когда установленное оборудование не соответствует проекту объем системы можно определить по следующей зависимости:

$$V_{cuc.} = Q_{cuc.} \cdot v, \mathbf{M}^3$$

Рисунок 25.37. Объём внутренних систем

- где Q_{сис}- расчетная тепловая нагрузка системы теплопотребления, Гкал/ч.
- v- удельный объем воды, принимаемый в зависимости от вида основного теплопотребляющего оборудования, (м³*ч)/Гкал.

Согласно МДК 4-05.2004: при отсутствии информации о типе нагревательных приборов, которыми оснащены системы теплопотребления (отопления, приточной вентиляции), допустимо принимать значение удельного объема для систем в размере 30 м³ ч/ Гкал. Емкость местных систем горячего водоснабжения в открытых системах теплоснабжения можно определять при $v = 6 \text{ м}^3 \text{ч}/\Gamma$ кал средней часовой тепловой нагрузки.

👔 Примечание

Определяя емкость систем теплопотребления, следует учитывать каждую из систем, покрывающих различные виды тепловой нагрузки, независимо от схемы их присоединения к тепловым сетям, за исключением систем, подключенных к тепловым сетям с помощью водяных теплообменников.

Величина непроизводительных нормативных часовых потерь, Гкал/ч из систем теплопотребления определяется по формуле:

$$\Delta Q_{ym.cuc.} = c \cdot \Delta G_{ym.cuc.} \cdot (\tau_2 - t_{xs.}) \cdot 10^{-3}, \Gamma кал/ч$$

Рисунок 25.38. Нормативные часовые потери

- с- удельная теплоёмкость сетевой воды, принимаемая равной 1 ккал/кг °С.
- где т₂- температура воды на выходе из системы отопления, °С.
- где t_{хв}- температура холодной воды (подпитки), °С.

25.7.2. Утечки на участках тепловой сети

Величина непроизводительной нормативной часовой утечки, т/ч из подающего и обратного трубопроводов тепловой сети определяется по формуле:

$$\Delta G_{ym.mp.} = \alpha \cdot V_{mp.} \cdot \rho \cdot 10^{-3}, t/4$$

Рисунок 25.39. Утечки из трубопровода

- α– нормируемая утечка сетевой воды, м³/(ч*м³). Доля нормативной утечки указывается в настройках расчета (<u>Раздел 9.4</u>, «<u>Настройка расчета утечек</u>»).
- V_{тр}- объем сетевой воды в трубопроводе тепловой сети, м³.
- где ρ- плотность воды (кг/м³), определяемая при τ_{ср}- средней температуре теплоносителя на входе и выходе из участка тепловой сети. При проведении наладочного расчет плотность указывается в настройках расчета (<u>Раздел 9.3, «Выбор и настройка</u> <u>параметров теплоносителя»</u>)

Объем трубопровода тепловой сети определяется по формуле:

$$V_{_{mp.}} = rac{\pi}{4} \cdot D^2 \cdot L$$
 , \mathbf{M}^3

Рисунок 25.40. Объем трубопровода

- где D- диаметр трубопровода, м.
- L- длина трубопровода, м.
- π- 3,14.

$$\tau_{\rm cp.} = \frac{\left(\tau_{\rm ex} + \tau_{\rm eblx}\right)}{2}, \, {}^{\circ}{\rm C}$$

Рисунок 25.41. Средняя температура теплоносителя

- где т_{вх}- температура теплоносителя на входе участка тепловой сети, °С.
- где $\tau_{вых}$ температура теплоносителя на выходе участка тепловой сети, °С.

Величина непроизводительных нормативных часовых потерь, Гкал/ч из подающего и обратного трубопроводов тепловой сети определяется по формуле:

$$\Delta Q_{ym.mp.} = C \cdot \Delta G_{ym.mp.} \cdot \left(\frac{\tau_{ex.} + \tau_{eblx.}}{2} - t_{xe.}\right) \cdot 10^{-3}, \Gamma \kappa a \pi/4$$

Рисунок 25.42. Потери тепла на участках

- с- удельная теплоёмкость сетевой воды, принимаемая равной 1 ккал/кг °С.
- где τ_{BX} температура теплоносителя на входе участка тепловой сети, °С.
- где т_{вых}- температура теплоносителя на выходе участка тепловой сети, °С.
- где t_{хв}- температура холодной воды (подпитки), °С.

Глава 26. Обновления ПО и настройка защиты HASP

Пользуясь нашим программным обеспечением важно следить, чтобы у Вас была последняя, наиболее полная версия, так как наши разработчики постоянно развивают возможности системы, и пользуясь устаревшей версией Вы существенно ограничиваете свои возможности.

Чтобы определить какая у вас установлена версия ZuluThermo выберите в меню Справка|О программе..., в появившемся окне обратите внимание на последние цифры, написанные в строке Версия, а также на Дату последней сборки:

Рисунок 26.1. Номер текущей версии

Скачать обновление можно с официального сайта <u>http://www.politerm.com.ru/</u> <u>download/</u> или по FTP: <u>ftp://ftp.politerm.com.ru/</u>.

26.1. Обновление справочной системы

Справочная система также постоянно обновляется, поэтому рекомендуем скачать последнюю версию файла справки (Zulu.chm, ZuluThermo.chm) <u>http://www.politerm.com/</u> <u>docs/</u> и переписать его вместо имеющегося в папке, где установлена ГИС Zulu.

Данная версия справочной системы от 11.01.16.

26.2. После установки обновления

В ходе обновления программного обеспечения, в расчетную часть могут быть добавлены новые поля баз данных по объектам. Этих полей может не оказаться в базах данных вашего слоя из-за более старой версии программы.

Для обновления таблиц баз данных следует:

- 1. Закройте все таблицы. Если по каким либо объектам сетей открыто окно семантической информации, необходимо его закрыть;
- Нажать кнопку Теплогидравлические расчеты (ZuluThermo) ²
 Выбрать слой тепловой сети из списка, нажав кнопку Слой... Перейти на вкладку Сервис.
- 3. Нажать кнопку Обновить структуры таблиц.

ZuluThermo		_ * ×
Пример тепловой сети		Слой
Наладка Поверка Температур	ный график Конструкторский Надежность	Сервис Оборудование
Длины участков с карты	Создать новую сеть	
Отметки высот с карты	Обновить структуры таблиц	
Начала и концы участков	Добавить поля по надежности	
Калькулятор	Единицы измерения	
	Расчет тепловых потерь	
Расчет Настройки Справка Закрыть		

Рисунок 26.2. Обновление таблиц

При успешном завершении операции обновления структур появится следующее сообщение:

При неудачном исходе операции обновления или при повторном появлении данного предупреждения, просим обратится по телефонам или по электронной почте по адресам указанным в разделе <u>Контактная информация</u> [http://www.politerm.com.ru/ contacts.htm].

26.3. Настройка защиты HASP

Защита программного обеспечения Zulu, в том числе и ZuluThermo осуществляется посредством ключа защиты HASP.

Примечание

В этом разделе рассмотрена настройка ZuluThermo. Более подробная инструкция по настройке защиты представлена в руководстве ГИС, а также на нашем сайте по следующей ссылке <u>http://www.politerm.com/articles/features/zuluhasp/</u>.

Рассмотрим 2 основных варианта защиты:

1. Организация использует локальный ключ.

При использовании локального ключа защиты HASP, настройка заключается лишь в установке драйвер для USB ключа.

2. Организация использует сетевой ключ.

При использовании сетевого ключа защиты HASP обязательно следует:

- 1. Проверить доступность сетевого ключа по следующей строке в любом интернет браузере <u>http://localhost:1947/_int_/ACC_help_index.html</u>
- 2. Включить использование сетевого ключа. <u>Раздел 9.10, «Настройка HASP»</u> для расчетов.
- 3. Включить использование сетевого ключа для пьезометрического графика. <u>Раздел 17.9</u>, «Настройка HASP».
Глава 27. Контакты

Если ознакомившись с данным руководством пользователя у Вас еще остались вопросы по работе с системой, или в процессе работы возникли какие либо проблемы, то свяжитесь с нашей технической поддержкой.

Прежде чем связываться с нашими специалистами убедитесь что у вас установлена самая последняя версия системы, как установить новую версию можно узнать в разделе <u>Обновление системы</u> [http://www.politerm.com/zuludoc/download2.htm].

Техническая поддержка доступна по телефонам (812)767-0352, 767-0353, 766-6728, электронной почте politerm@politerm.com и на нашем форуме:<u>http://www.politerm.com/forums/</u>, а также в разделе <u>Контакты на нашем сайте</u> [http://politerm.com/contacts.htm]

Данная версия справочной системы от 11.01.16.

Приложение А. Схемы подключения

- 1. Раздел А.1, «Расчетные схемы присоединения потребителей»
- 2. Раздел А.2, «Расчетные схемы присоединения ЦТП»

Условные обозначения, принятые при изображении схем тепловых пунктов:

- 1. ГВС- система горячего водоснабжения;
- 2. В- система вентиляции;
- 3. СО- система отопления;
- 4. РР- регулятор расхода;
- 5. РТ- регулятор температуры;
- 6. РО- регулятор отопления (работающий в зависимости от температуры наружнего воздуха);
- 7. ТСО- теплообменный аппарат на систему отопления;
- 8. П1СТ- подогреватель- теплообменный аппарат первой (нижней) ступени на систему горячего водоснабжения;
- 9. П2СТ- подогреватель- теплообменный аппарат второй (верхней) ступени на систему горячего водоснабжения;

10.СН- смесительный насос;

11.ЦНСО- циркуляционный насос системы отопления;

12.ЦНСГВ- циркуляционный насос системы горячего водоснабжения;

13.Э- элеватор;

14.БС- бак смеситель

15.ШВ- место установки шайбы (регулирующего клапана) на систему вентиляции;

16.ХВ- холодная водопроводная вода;

А.1. Расчетные схемы присоединения потребителей

(i) Примечание

Схемы подключения потребителей тепловой сети универсальны. Например, не указав данные по системе вентиляции (CB), в выбранной схеме CB рассчитываться не будет.

В схемах №: 1, 2, 3, 4, 5, 6 не указав данные по системе ГВС, в выбранной схеме ГВС рассчитываться не будет. Наличие регулятора температуры ГВС, цирку-

ляционной линии, насоса на подающей линии ГВС указывается пользователем в базе данных определенного объекта тепловой сети.

Для системы отопления наличие регулятор расхода, давления в обратном трубопроводе или регулятора отопления (погодное регулирование) указывается пользователем в базе данных определенного объекта тепловой сети.

А.1.1. Схема № 1

Потребитель с открытым водоразбором на ГВС и независимым присоединением СО и СВ

А.1.2. Схема № 2

Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО

А.1.3. Схема № 3

Потребитель с открытым водоразбором на ГВС и независимым присоединением СО

А.1.4. Схема № 4

Потребитель с открытым водоразбором на ГВС и непосредственным присоединением CO

А.1.5. Схема № 5

Потребитель с открытым водоразбором на ГВС и насосным присоединением СО

А.1.6. Схема № 6

Потребитель с открытым водоразбором на ГВС и элеваторным присоединением СО

А.1.7. Схема № 7

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.8. Схема № 8

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО

А.1.9. Схема Nº 9

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.1.10. Схема № 10

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.11. Схема № 11

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением СО

А.1.12. Схема № 12

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.13. Схема № 13

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.14. Схема № 14

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО

А.1.15. Схема Nº 15

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением CO и CB

А.1.16. Схема № 16

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.17. Схема № 17

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и насосным присоединением СО

А.1.18. Схема Nº 18

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.19. Схема № 19

Потребитель с параллельным подключением подогревателей ГВС и элеваторным присоединением СО

А.1.20. Схема № 20

Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО

А.1.21. Схема № 21

Потребитель с параллельным подключением подогревателей ГВС и насосным присоединением СО и СВ

А.1.22. Схема № 22

Потребитель с параллельным подключением подогревателей ГВС и независимым присоединением СО и СВ

А.1.23. Схема Nº 23

Потребитель с параллельным подключением подогревателя ГВС и насосным присоединением СО

А.1.24. Схема № 24

Потребитель с параллельным подключением подогревателя ГВС и элеваторным присоединением СО

А.1.25. Схема № 25

Потребитель с вентиляционной нагрузкой

А.1.26. Схема Nº 26

Потребитель с открытым водоразбором и циркуляционной линией

А.1.27. Схема № 27

Потребитель с подогревателями ГВС

А.1.28. Схема Nº 28

Потребитель с параллельным подключением подогревателя ГВС и непосредственным присоединением СО

А.1.29. Схема № 29

Потребитель с последовательным подключением подогревателя ГВС и элеваторном присоединением СО

А.1.30. Схема № 30

Потребитель с последовательным подключением подогревателя ГВС и насосным присоединением СО

А.1.31. Схема № 31

Потребитель с последовательным подключением подогревателя ГВС и независимым присоединением СО и СВ.

А.1.32. Схема № 32

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС и непосредственным присоединением СО

А.1.33. Схема № 33

Потребитель с двухступенчатым последовательным подключением подогревателей ГВС и непосредственным присоединением СО

А.1.34. Схема № 34

Потребитель с двухступенчатым смешанным подключением подогревателей ГВС

А.1.35. Схема № 35

Потребитель с последовательным подключением подогревателя ГВС и непосредственным присоединением СО

А.2. Расчетные схемы присоединения ЦТП

А.2.1. Схема Nº 1

ЦТП с независимым присоединением СО и СВ

А.2.2. Схема № 2

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и независимым присоединением CO и CB

А.2.3. Схема № 3

ЦТП с параллельным подключением подогревателей ГВС и независимым присоединением CO и CB

А.2.4. Схема № 4

ЦТП с групповым элеваторным присоединением СО

А.2.5. Схема № 5

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и непосредственным присоединением СО

А.2.6. Схема № 6

ЦТП с параллельным подключением подогревателей ГВС и непосредственным присоединением СО

А.2.7. Схема № 7

ЦТП с насосным смешением на СО и СВ

А.2.8. Схема № 8

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосным смешением на CO и CB

А.2.9. Схема № 9

ЦТП с параллельным подключением подогревателя ГВС и насосным смешением на CO и CB

А.2.10. Схема № 10

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и элеваторным смешением на СО

А.2.11. Схема № 11

ЦТП с параллельным подключением подогревателя ГВС и элеваторным смешением на CO

А.2.12. Схема №12

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и непосредственным присоединением СО и СВ

А.2.13. Схема № 13

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и элеваторным присоединением СО

А.2.14. Схема № 14

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосным присоединением CO и CB

А.2.15. Схема № 15

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и независимым присоединением СО

А.2.16. Схема № 16

ЦТП с одноступенчатым последовательным подключением подогревателей ГВС и непосредственным присоединением СО и СВ

А.2.17. Схема Nº 17

ЦТП с открытым водоразбором на ГВС, а также с возможностью установки регулятора температуры или насоса на подающем на систему горячего водоснабжения

А.2.18. Схема Nº 18

ЦТП с последовательным подключением подогревателя ГВС и элеваторным смешением на СО

А.2.19. Схема № 19

ЦТП с последовательным подключением подогревателя ГВС и насосным смешением на CO

А.2.20. Схема № 20

ЦТП с последовательным подключением подогревателей ГВС и независимым присоединением СО и СВ.

А.2.21. Схема Nº 21

ЦТП с насосом смешения на подающем трубопроводе.

А.2.22. Схема № 22

ЦТП с насосом смешения на обратном трубопроводе.

А.2.23. Схема № 23

ЦТП с параллельным подключением подогревателя ГВС и насосом смешения на подающем трубопроводе на СО

А.2.24. Схема № 24

ЦТП с параллельным подключением подогревателя ГВС и насосом смешения на обратном трубопроводе на СО

А.2.25. Схема № 25

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосом смешения на подающем трубопроводе на СО.

А.2.26. Схема № 26

ЦТП с двухступенчатым смешанным подключением подогревателей ГВС и насосом смешения на обратном трубопроводе на СО

А.2.27. Схема № 27

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосом смешения на подающем трубопроводе на СО.

А.2.28. Схема № 28

ЦТП с двухступенчатым последовательным подключением подогревателей ГВС и насосом смешения на обратном трубопроводе.

А.2.29. Схема Nº 29

Моделирует работу бака смесителя для открытой схемы ГВС.

Моделируется устройство (бак смеситель), которое смешивает сетевую воду подающего и обратного трубопроводов с водой циркуляционного контура ГВС так, чтобы в подающем трубопроводе контура ГВС температура воды была постоянно равна заданному значению. Ветка сети на систему отопления проходят в этой схеме через узел без изменений. Поскольку данный узел имеет один вход и два выхода (контур ГВС и контур системы отопления), то контур ГВС при изображении сети должен подключаться через вспомогательный участок.

Приложение В. Нормы тепловых потерь

- <u>Раздел В.1, «1959 года- Нормы проектирования тепловой изоляции для трубопрово-</u> дов и оборудования электростанций и тепловых сетей. М.: Госстройиздат, <u>1959</u>»
- Раздел В.2, «1988 года- СНиП 2.04.14-88* Тепловая изоляция оборудования и трубопроводов»
- Раздел В.3, «1997 года- Изменения внесенные в СНиП 2.04.14-88* постановлением Госстроя России от 29.12.97 г. № 18-80»
- Раздел В.4, «2003 года- СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»
- <u>Раздел В.5, «КТМ 204 Украины 244-94»</u>

В.1. 1959 года- Нормы проектирования тепловой изоляции для трубопроводов и оборудования электростанций и тепловых сетей. М.: Госстройиздат, 1959

Нормы тепловых потерь (плотность теплового потока) водяными теплопроводами

Таблица В.1. Нормы тепловых потерь изолированными теплопроводами в непроходных каналах и при бесканальной прокладке с расчетной среднегодовой температурой грунта + 5 °C на глубине заложения теплопроводов.

Наружный диа-	Нормы т	епловых потерь т	еплопроводами, ки	кал/(м*ч)
метр труб, мм	Обратным при средней температуре воды = 50 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 52,5 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 65 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 75 °С
32	20	45	52	58
57	25	56	65	72
76	29	64	74	82
89	31	69	80	88
108	34	76	88	96

Наружный диа-	Нормы тепловых потерь теплопроводами, ккал/(м*ч)									
метр труб, мм	Обратным при средней температуре воды = 50 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 52,5 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 65 °С	Двухтрубной прокладки при разности сред- негодовых тем- ператур воды и грунта 75 °С						
159	42	94	107	117						
219	51	113	130	142						
273	60	132	150	163						
325	68	149	168	183						
377	76	164	183	202						
426	82	180	203	219						
478	91	198	223	241						
529	101	216	243	261						
630	114	246	277	298						
720	125	272	306	327						
820	141	304	341	364						
920	155	333	373	399						
1020	170	366	410	436						
1220	200	429	482	508						
1420	228	488	554	580						

Таблица В.2. Нормы тепловых потерь одним изолированным водяным теплопроводом при надземной прокладке с расчетной среднегодовой температурой наружного воздуха + 5 °C

Наружный диа-	Нормы тепловых потерь теплопроводами, ккал/(м*ч)										
метр труб, мм	Разность ср ющем или о	Разность среднегодовой температуры сетевой воды в пода- ющем или обратном трубопроводах и наружного воздуха, °С									
	45	70	95	120							
32	15	23	31	38							
49	18	27	36	45							
57	21	30	40	49							
76	25	35	45	55							
82	28	38	50	60							
108	31	43	55	67							
133	35	48	60	74							
159	38	50	65	80							
194	42	58	73	88							
219	46	60	78	95							
273	53	70	87	107							

Наружный диа-	Нормы т	Нормы тепловых потерь теплопроводами, ккал/(м*ч)										
метр труб, мм	Разность ср ющем или о	оеднегодовой темп братном трубопро	ературы сетевой в водах и наружного	оды в пода-) воздуха, °С								
	45	70	95	120								
325	60	80	100	120								
377	71	93	114	135								
426	82	105	128	150								
478	89	113	136	160								
429	95	120	145	170								
630	104	133	160	190								
720	115	145	176	206								
820	135	168	200	233								
920	155	190	225	260								
1020	180	220	255	292								
1420	230	280	325	380								

В.2. 1988 года- СНиП 2.04.14-88* Тепловая изоляция оборудования и трубопроводов

Таблица В.3. Норма плотности теплового потока при расположении трубопроводов на открытом воздухе и числе часов работы в год более 5000 (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

			Ср	едняя	гемпера	атура т	еплоно	сителя	°C		
	20	50	100	150	200	250	300	350	400	450	500
лй убо- мм]	Норма	плотно	сти теп	лового	потока	ì		
Условны проход тр провода,	KKaJI/(4 [*] M)	ккал/(ч*м)	KKaJI/(4 [*] M)	KKaJI/(4 [*] M)	KKaJI/(H*M)	KKaJI/(4 [*] M)	KKaJI/(4 [*] M)	KKaJI/(4 [*] M)	KKaJI/(H*M)	ккал/(ч *м)	(м*н)/пкал
15	3,44	8,6	17,2	25,8	36,12	47,3	58,48	71,38	85,14	98,9	114,38
20	4,3	9,46	18,92	29,24	40,42	51,6	64,5	78,26	92,88	109,22	126,42
25	4,3	11,18	21,5	31,82	44,72	56,76	70,52	85,14	100,62	117,82	135,88
40	6,02	12,9	24,94	37,84	50,74	66,22	81,7	98,9	116,96	135,88	156,52
50	6,02	14,62	26,66	40,42	55,04	70,52	87,72	105,78	12,04	144,48	165,98
65	7,74	16,34	30,96	46,44	61,92	79,98	98,04	117,82	139,32	160,82	184,04
80	8,6	18,06	33,54	49,88	66,22	85,14	104,92	126,42	147,92	172	196,08
100	9,46	20,64	36,98	55,04	73,1	93,74	115,24	137,6	160,82	185,76	212,42

			Ср	едняя	гемпера	атура т	еплоно	сителя	°C		
	20	50	100	150	200	250	300	350	400	450	500
ій убо- мм]	Норма	плотно	сти теп	лового	потока	ì	1	
Условны проход тру провода, 1	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч*м)	KKaJJ(H*M)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч [*] м)	KKaJJ/(4 [*] M)	ккал/(ч*м)
125	10,32	23,22	42,14	60,2	79,98	104,92	128,14	153,08	178,88	206,4	234,78
150	12,04	25,8	46,44	66,22	87,82	115,24	141,04	166,84	194,36	223,6	254,56
200	15,48	31,82	55,9	79,98	104,92	136,74	166,84	196,08	228,76	262,3	296,7
250	18,06	36,98	64,5	91,16	118,68	153,94	184,9	218,44	252,84	289,82	327,66
300	21,5	42,14	72,24	101,48	133,3	170,28	205,54	240,8	278,64	318,2	359,48
350	24,08	47,3	79,98	112,66	146,2	187,48	224,46	263,16	303,58	346,58	390,44
400	25,8	52,46	87,72	122,12	159,1	202,96	242,52	283,8	326,8	372,38	418,82
450	28,38	55,9	93,74	130,72	169,42	216,72	258,86	301,86	347,44	394,4	443,76
500	30,96	61,06	102,34	142,76	181,46	233,06	276,92	323,36	370,66	422,26	473
600	36,12	70,52	116,96	161,68	206,4	263,16	312,18	362,92	415,38	471,28	528,04
700	41,28	79,12	129,86	179,74	227,04	289,82	343,14	398,18	454,94	515,14	577,92
800	45,58	88,58	143,62	183,18	251,12	319,06	376,68	436,02	497,94	562,44	630,38
900	50,74	97,18	158,24	217,58	274,34	348,3	410,22	473,86	540,08	609,74	681,98
1000	55,9	106,64	172,86	236,5	297,56	376,68	443,76	511,7	582,22	656,18	733,58
Криволиней- ные поверх- ности диамет- ром более 1020 мм и плоские	16,34	30,1	46,44	60,2	73,1	90,3	103,2	116,1	129	141,9	154,8

(ј) Примечание

Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.4. Норма плотности теплового потока при расположении трубопроводов на открытом воздухе и числе часов работы в год

		Средняя температура теплоносителя °С											
	20	50	100	150	200	250	300	350	400	450	500		
ій 760- ММ]	Норма	плотно	сти теп	лового	потока	ì	1			
Условны проход тру провода, 1	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	Ккал/(ч*м)		
15	4,3	9,46	18,92	29,24	39,56	50,74	63,64	77,4	91,16	106,64	122,98		
20	5,16	11,18	21,5	32,68	44,72	56,76	70,52	85,14	101,48	118,68	135,88		
25	5,16	12,9	24,08	36,12	49,02	62,78	77,4	170,28	109,22	128,14	147,06		
40	6,88	15,48	28,38	42,14	56,76	73,96	90,3	108,36	128,14	148,78	171,14		
50	7,74	15,48	30,96	45,58	61,06	78,26	97,18	116,1	136,74	158,24	182,32		
65	8,6	19,78	35,26	52,46	69,66	89,44	109,22	130,72	153,08	178,02	203,82		
80	9,46	21,5	38,7	56,76	74,82	96,32	117,82	140,18	164,26	190,06	217,58		
100	11,18	24,08	43	62,78	83,42	105,78	129	153,08	178,88	207,26	236,5		
125	12,9	27,52	48,16	69,66	92,02	119,54	144,48	172	200,38	231,34	263,16		
150	15,48	30,1	54,18	76,54	101,48	131,58	159,1	188,34	220,16	252,84	285,52		
200	18,92	37,84	66,22	93,74	122,12	158,24	190,06	225,32	260,58	297,56	336,26		
250	22,36	43,86	75,68	107,5	138,46	178,02	213,28	251,98	288,96	331,1	373,24		
300	25,8	50,74	86,86	120,4	155,66	198,66	239,08	278,64	321,64	366,36	411,94		
350	30,1	56,76	96,32	133,3	172	219,3	262,3	305,3	351,74	400,76	449,78		
400	32,68	62,78	104,92	146,2	186,62	237,36	284,66	331,96	380,12	431,72	484,18		
450	35,26	68,8	113,52	156,52	200,38	256,28	303,58	354,32	405,06	460,1	515,14		
500	38,7	75,68	122,98	169,42	215,86	276,92	325,94	380,12	435,16	492,78	551,26		
600	45,58	86	141,9	193,5	247,68	313,9	371,52	429,14	490,2	553,84	618,34		
700	51,6	98,04	158,24	215	274,34	347,44	408,5	473	538,36	608,02	677,68		
800	57,62	110,08	176,3	239,08	303,58	384,42	452,36	520,3	591,68	666,5	742,18		
900	64,5	121,26	194,36	263,16	333,68	418,82	493,64	567,6	644,14	724,98	805,82		
1000	71,38	133,3	212,42	286,38	362,06	456,66	534,92	614,9	696,6	783,46	869,46		
Криволиней- ные поверх- ности диамет- ром более 1020 мм и плоские	21,5	37,84	61,06	75,68	92,88	114,38	130,72	141,9	163,4	179,74	195,22		

5000 и менее. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

(i) Примечание

Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.5. Норма плотности теплового потока при расположении трубопроводов в помещении и тоннеле и числе часов работы в год более 5000. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

		Средняя температура теплоносителя °С											
_	50	100	150	200	250	300	350	400	450	500			
лй убо- мм			Ho	рма пло	отности	теплов	ого пото	ока					
Условни проход тр провода,	ккал/(ч *м)	ккал/(ч [*] м)	ккал/(ч *м)	ккал/(ч *м)	ккал/(ч*м)	ккал/(ч *м)	ккал/(ч *м)	ккал/(ч*м)	ккал/(ч *м)	ккал/(ч *м)			
15	6,88	15,48	24,08	34,4	45,58	56,76	69,66	82,56	98,04	113,52			
20	7,74	17,2	27,52	38,7	49,88	62,78	76,54	91,16	107,5	124,7			
25	8,6	18,92	30,1	42,14	55,04	67,94	83,42	98,9	116,1	134,16			
40	10,32	22,36	35,26	49,02	63,64	79,98	96,32	115,24	134,16	153,94			
50	11,18	24,08	37,84	52,46	68,8	85,14	103,2	122,12	142,76	163,4			
65	12,9	27,52	43	59,34	77,4	96,32	115,24	136,74	159,1	181,46			
80	13,76	30,1	46,44	63,64	83,42	102,34	122,98	145,34	169,42	193,5			
100	15,48	33,54	51,6	69,66	90,3	111,8	134,16	158,24	183,18	209,84			
125	18,06	37,84	56,76	77,4	101,48	124,7	150,5	176,3	203,82	232,2			
150	20,64	42,14	62,78	84,28	111,8	137,6	163,4	191,78	221,02	251,12			
200	24,94	50,74	75,68	101,48	133,3	162,54	193,5	224,46	258,86	293,26			
250	29,24	58,48	86	114,38	149,64	181,46	214,14	248,54	286,38	324,22			
300	33,54	66,22	96,32	128,14	165,98	200,38	236,5	274,34	314,76	355,18			
350	37,84	73,1	106,64	141,04	182,32	220,16	258,86	299,28	342,28	386,14			
400	41,28	79,98	116,1	153,08	197,8	237,36	278,64	321,64	368,08	415,38			
450	44,72	86,86	124,7	163,4	210,7	252,84	296,7	342,28	391,3	439,46			
500	49,02	93,74	134,16	176,3	227,04	271,76	318,2	366,36	417,1	467,84			
600	57,62	107,5	153,94	199,52	256,28	306,16	356,9	410,22	466,12	522,88			
700	63,64	119,54	171,14	220,16	282,08	336,26	392,16	448,92	509,12	570,18			
800	72,24	133,3	189,2	243,38	311,32	369,8	429,14	491,06	556,42	624,36			
900	79,98	146,2	207,26	265,74	339,7	402,48	466,98	533,2	603,72	675,96			
1000	87,72	159,96	225,32	288,1	368,08	435,16	503,96	574,48	651,88	726,7			

	Средняя температура теплоносителя °С												
	50	100	150	200	250	300	350	400	450	500			
лй убо- мм		Норма плотности теплового потока											
Условни проход тр провода,	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч [*] м)	ккал/(ч [*] м)			
Криволиней- ные поверх- ности диамет- ром более 1020 мм и плоские	24,94	43	58,48	71,38	89,44	102,34	115,24	128,14	141,9	153,94			

Примечание

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.6. Норма плотности теплового потока при расположении трубопроводов в помещении и тоннеле и числе часов работы в год 5000 и менее. (СНиП 2.04.14-88 «Тепловая изоляция трубопроводов и оборудования»)

			Сред	няя тем	ператуј	ра тепло	оносите.	ля °С		
_	50	100	150	200	250	300	350	400	450	500
1й ММ			Ho	рма пл	отности	теплов	ого пото	жа		
Условнь проход тр провода,	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)	ккал/(ч*м)	ккал/(ч*м)
15	7,74	17,2	26,66	37,84	49,02	61,92	74,82	89,44	104,92	121,26
20	8,6	18,92	30,1	42,14	55,04	68,8	83,42	98,9	116,1	134,16
25	9,46	21,5	33,54	46,44	60,2	74,82	91,16	107,5	126,42	145,34
40	11,18	24,94	39,56	55,04	71,38	88,58	106,64	125,56	146,2	167,7
50	12,9	27,52	42,14	58,48	76,54	94,6	113,52	134,16	156,52	178,88
65	14,62	31,82	49,02	67,08	86,86	106,64	128,14	151,36	175,44	200,38
80	17,2	35,26	53,32	72,24	92,88	114,38	137,6	161,68	188,34	214,14
100	18,92	38,7	59,34	79,98	102,34	125,56	12,9	176,3	203,82	233,06
125	21,5	43,86	66,22	87,72	116,1	141,9	168,56	196,94	228,76	259,72

			Сред	няя тем	ператуј	ра тепло	оносите.	ля °C		
	50	100	150	200	250	300	350	400	450	500
лй убо- мм			Ho	рма пло	отности	теплов	ого пото	жа	1	
Условнь проход тру провода,	ккал/(ч *м)	ккал/(ч *м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч *м)	ккал/(ч [*] м)	ккал/(ч *м)	ккал/(ч*м)	ккал/(ч [*] м)	ккал/(ч*м)
150	24,08	48,16	73,1	98,04	128,14	155,66	184,9	215,86	249,4	282,94
200	30,96	60,2	88,58	117,82	153,94	185,76	220,16	257,14	294,12	332,82
250	36,12	69,66	101,48	133,3	172,86	208,12	246,82	285,52	327,66	368,94
300	41,28	79,12	114,38	149,64	193,5	232,2	274,34	316,48	362,06	407,64
350	45,58	88,58	126,42	165,98	213,28	257,14	301	347,44	395,6	444,62
400	51,6	97,18	139,32	180,6	231,34	278,64	325,94	374,96	426,56	479,02
450	55,04	104,92	148,78	193,5	250,26	298,42	348,3	399,9	454,94	509,98
500	61,06	113,52	161,68	208,98	270,04	320,78	374,1	429,14	486,76	545,24
600	69,66	130,72	184,9	238,22	307,02	363,78	423,12	483,32	547,82	612,32
700	78,26	146,2	205,54	265,74	338,84	401,62	465,26	531,48	601,14	670,8
800	87,72	163,4	227,9	294,12	374,96	442,9	512,56	583,94	659,62	736,16
900	98,04	179,74	251,12	322,5	411,08	484,18	559	636,4	718,1	798,94
1000	107,5	196,94	273,48	350,88	446,34	525,46	605,44	688	776,58	862,58
Криволиней- ные поверх- ности диамет- ром более 1020 мм и плоские	30,96	54,18	73,1	90,3	113,52	129,86	146,2	161,68	179,74	194,36

Примечание

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах.

		Трубопровод										
	подаі	ющий	обра	тный	пода	ющий	обра	тный	пода	ющий	обра	тный
¢ >			Сре	днегод	овая т	емпера	тура т	еплоно	сител	я, °С		
ный груб а, мі	6	5	50		9	0	5	50	1	10	5	50
Услон проход провод	BT/M	ккал/(ч* м)	BT/M	ккал/(ч* м)	Вт/м	ккал/(ч* м)	BT/M	ккал/(ч* м)	BT/M	ккал/(ч *м)	BT/M	ккал/(ч*м)
25	18	15,48	12	10,32	26	22,36	11	9,46	31	26,66	10	8,6
30	19	16,34	13	11,18	27	23,22	12	10,32	33	28,38	11	9,46
40	21	18,06	14	12,04	29	24,94	13	11,18	36	30,96	12	10,32
50	22	18,92	15	12,9	33	28,38	14	12,04	40	34,4	13	11,18
65	27	23,22	19	16,34	38	32,68	16	13,76	47	40,42	14	12,04
80	29	24,94	20	17,2	41	35,26	17	14,62	51	43,86	15	12,9
100	33	28,38	22	18,92	46	39,56	19	16,34	57	49,02	17	14,62
125	34	29,24	23	19,78	49	42,14	20	17,2	61	52,46	18	15,48
150	38	32,68	26	22,36	54	46,44	22	18,92	65	55,9	19	16,34
200	48	41,28	31	26,66	66	56,76	26	22,36	83	71,38	23	19,78
250	54	46,44	35	30,1	76	65,36	29	24,94	93	79,98	25	21,5
300	62	53,32	40	34,4	87	74,82	32	27,52	103	88,58	28	24,08
350	68	58,48	44	37,84	93	79,98	34	29,24	117	100,62	29	24,94
400	76	65,36	47	40,42	109	93,74	37	31,82	123	105,78	30	25,8
450	77	66,22	49	42,14	112	96,32	39	33,54	135	116,1	32	27,52
500	88	75,68	54	46,44	126	108,36	43	36,98	167	143,62	33	28,38
600	98	84,28	58	49,88	140	120,4	45	38,7	171	147,06	35	30,1
700	107	92,02	63	54,18	163	140,18	47	40,42	185	159,1	38	32,68
800	130	111,8	72	61,92	181	155,66	48	41,28	213	183,18	42	36,12
900	138	118,68	75	64,5	190	163,4	57	49,02	234	201,24	44	37,84
1000	152	130,72	78	67,08	199	171,14	59	50,74	249	214,14	49	42,14
1200	185	159,1	86	73,96	257	221,02	66	56,76	300	258	54	46,44
1400	204	175,44	90	77,4	284	244,24	69	59,34	322	276,92	58	49,88

Таблица В.7. Норма плотности теплового потока при числе часов работы в год 5000 и менее (СНиП 2.04.14-88)

Примечание

1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90, 110 °C соответствуют температурным графикам 95-70, 150-70, 180-70 °C;

2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов двухтрубных водяных тепловых сетей при прокладке в непроходных каналах.

Таблица В.8. Норма плотности теплового потока при числе часов работы в год более 5000(СНиП 2.04.14-88)

	Трубопровод											
Условный проход трубо- провода, мм	подающий		обратный		пода	ющий	обра	тный	пода	ющий	обратный	
	Среднегодовая температура теплоносителя, °С											
	6	55	50		9	0	50		110		50	
	BT/M	ккал/(ч*м)	BT/M	ккал/(ч*м)	BT/M	ккал/(ч*м)	BT/M	ккал/(ч *м)	B _T /M	ккал/(ч *м)	BT/M	ккал/(ч*м)
25	16	13,76	11	9,46	23	19,78	10	8,6	28	24,08	9	7,74
30	17	14,62	12	10,32	24	20,64	11	9,46	30	25,8	10	8,6
40	18	15,48	13	11,18	26	22,36	12	10,32	32	27,52	11	9,46
50	20	17,2	14	12,04	28	24,08	13	11,18	35	30,1	12	10,32
65	23	19,78	16	13,76	34	29,24	15	12,9	40	34,4	13	11,18
80	25	21,5	17	14,62	36	30,96	16	13,76	44	37,84	14	12,04
100	28	24,08	19	16,34	41	35,26	17	14,62	48	41,28	15	12,9
125	31	26,66	21	18,06	42	36,12	18	15,48	50	43	16	13,76
150	32	27,52	22	18,92	44	37,84	19	16,34	55	47,3	17	14,62
200	39	33,54	27	23,22	54	46,44	22	18,92	68	58,48	21	18,06
250	45	38,7	30	25,8	64	55,04	25	21,5	77	66,22	23	19,78
300	50	43	33	28,38	70	60,2	28	24,08	84	72,24	25	21,5
350	55	47,3	37	31,82	75	64,5	30	25,8	94	80,84	26	22,36
400	58	49,88	38	32,68	82	70,52	33	28,38	101	86,86	28	24,08
450	67	57,62	43	36,98	93	79,98	36	30,96	107	92,02	29	24,94
500	68	58,48	44	37,84	98	84,28	38	32,68	117	100,62	32	27,52
600	79	67,94	50	43	109	93,74	41	35,26	132	113,52	34	29,24
700	89	76,54	55	47,3	126	108,36	43	36,98	151	129,86	37	31,82
800	100	86	60	51,6	140	120,4	45	38,7	163	140,18	40	34,4
900	106	91,16	66	56,76	151	129,86	54	46,44	186	159,96	43	36,98
1000	117	100,62	71	61,06	158	135,88	57	49,02	192	165,12	47	40,42
1200	144	123,84	79	67,94	185	159,1	64	55,04	229	196,94	52	44,72
1400	152	130,72	82	70,52	210	180,6	68	58,48	252	216,72	56	48,16

Примечание

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90, 110 °C соответствуют температурным графикам 95-70, 150-70, 180-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей.

Таблица В.9. Норма плотности теплового потока при числе часов работы в год 5000 и менее (СНиП 2.04.14-88)

Условный	Трубопровод										
проход трубо-	подающий		обра	гный	подан	ощий	обратный				
провода, мм	Среднегодовая температура теплоносителя, °С										
	6	5	5	0	9	0	50				
	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)			
25	36	30,96	27	23,22	48	41,28	26	22,36			
50	44	37,84	34	29,24	60	51,6	32	27,52			
65	50	43	38	32,68	67	57,62	36	30,96			
80	51	43,86	39	33,54	69	59,34	37	31,82			
100	55	47,3	42	36,12	74	63,64	40	34,4			
125	61	52,46	46	39,56	81	69,66	44	37,84			
150	69	59,34	52	44,72	91	78,26	49	42,14			
200	77	66,22	59	50,74	101	86,86	54	46,44			
250	83	71,38	63	54,18	111	95,46	59	50,74			
300	91	78,26	69	59,34	122	104,92	64	55,04			
350	101	86,86	75	64,5	133	114,38	69	59,34			
400	108	92,88	80	68,8	140	120,4	73	62,78			
450	116	99,76	86	73,96	151	129,86	78	67,08			
500	123	105,78	91	78,26	163	140,18	83	71,38			
600	140	120,4	103	88,58	186	159,96	94	80,84			
700	156	134,16	112	96,32	203	174,58	100	86			
800	169	145,34	122	104,92	226	194,36	109	93,74			

Примечание

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90 °C соответствуют температурным графикам 95-70, 150-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Норма плотности теплового потока через изолированную поверхность трубопроводов при двухтрубной подземной бесканальной прокладке водяных тепловых сетей.

Таблица В.10. Норма плотности теплового потока при числе часов работы в год более 5000(СНиП 2.04.14-88)

Условный	Трубопровод										
проход трубо-	пода	ющий	обра	тный	пода	ющий	обратный				
провода, мм	Среднегодовая температура теплоносителя, °С										
	(5	5	50	9	0	50				
	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)	Вт/м	ккал/ (ч*м)			
25	33	28,38	25	21,5	44	37,84	24	20,64			
50	40	34,4	31	26,66	54	46,44	29	24,94			
65	45	38,7	34	29,24	60	51,6	33	28,38			
80	46	39,56	35	30,1	61	52,46	34	29,24			
100	49	42,14	38	32,68	65	55,9	35	30,1			
125	53	45,58	41	35,26	72	61,92	39	33,54			
150	60	51,6	46	39,56	80	68,8	43	36,98			
200	66	56,76	50	43	89	76,54	48	41,28			
250	72	61,92	55	47,3	96	82,56	51	43,86			
300	79	67,94	59	50,74	105	90,3	56	48,16			
350	86	73,96	65	55,9	113	97,18	60	51,6			
400	91	78,26	68	58,48	121	104,06	63	54,18			
450	97	83,42	72	61,92	129	110,94	67	57,62			
500	105	90,3	78	67,08	138	118,68	72	61,92			
600	117	100,62	87	74,82	156	134,16	80	68,8			
700	126	108,36	93	79,98	170	146,2	86	73,96			
800	140	120,4	102	87,72	186	159,96	93	79,98			

Примечание

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65, 90 °C соответствуют температурным графикам 95-70, 150-70 °C;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией;
- 3. При применении в качестве теплоизоляционного слоя пенополиуретана, фенольного поропласта ФЛ, полимербетона значения норм плотности следует определять с учетом коэффициента К2, приведенного в таблице ниже.

Таблица В.11. Коэффициент К2, учитывающий изменение норм плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ

Материал тепло-	Условный проход трубопровода, мм								
изоляционного слоя	25-65	89-150	200-300	350-500					
	Коэффициент К2								
пенополиуретан, фе- нольный поропласт	0,5	0,6	0,7	0,8					
полимербетон	0,7	0,8	0,9	1					

В.3. 1997 года- Изменения внесенные в СНиП 2.04.14-88* постановлением Госстроя России от 29.12.97 г. № 18-80

Таблица В.12. Норма плотности теплового потока трубопроводов при числе часов работы в год 5000 и менее

Условный диа- метр трубо- провода, мм	Трубопровод												
	Подающий		Обратный		Подающий		Обратный		Подающий		Обратный		
	Среднегодовая температура теплоносителя												
	65		50		90		50		110		50		
	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	
25	15	12,9	10	8,6	22	18,92	10	8,6	26	22,36	9	7,74	
30	16	13,76	11	9,46	23	19,78	11	9,46	28	24,08	10	8,6	
40	18	15,48	12	10,32	25	21,5	12	10,32	31	26,66	11	9,46	
50	19	16,34	13	11,18	28	24,08	13	11,18	34	29,24	12	10,32	
65	23	19,78	16	13,76	32	27,52	14	12,04	40	34,4	13	11,18	
80	25	21,5	17	14,62	35	30,1	15	12,9	43	36,98	14	12,04	
100	28	24,08	19	16,34	39	33,54	16	13,76	48	41,28	16	13,76	
125	29	24,94	20	17,2	42	36,12	17	14,62	52	44,72	17	14,62	
150	32	27,52	22	18,92	46	39,56	19	16,34	55	47,3	18	15,48	
200	41	35,26	26	22,36	55	47,3	22	18,92	71	61,06	20	17,2	
250	46	39,56	30	25,8	65	55,9	25	21,5	79	67,94	21	18,06	
300	53	45,58	34	29,24	74	63,64	27	23,22	88	75,68	24	20,64	
						Трубог	іровод	ί					
-------------------------------	--	--------	------	------------	-------	------------	--------	------------	--------	------------	------	---------------------	
	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	
4 1 38			Cl	реднего	довая	темпер	ратура	тепло	носите	сля			
йдн убо а, мі	6	55	5	50	9	0	5	50	1	10	5	;0	
Условны метр тך проводя	Action Action Action Method Action Method Action State Action State		BT/M	ккал/(м*ч)	Вт/м	ккал/(м*ч)	BT/M	ккал/(м*ч)	Вт/м	ККАЛ/(M*ч)	BT/M	ккал/(м* ч)	
350	58	49,88	37	31,82	79	67,94	29	24,94	98	84,28	25	21,5	
400	65	55,9	40	34,4	87	74,82	32	27,52	105	90,3	26	22,36	
450	70	60,2	42	36,12	95	81,7	33	28,38	115	98,9	27	23,22	
500	75	64,5	46	39,56	107	92,02	36	30,96	130	111,8	28	24,08	
600	83	71,38	49	42,14	119	102,34	38	32,68	145	124,7	30	25,8	
700	91	78,26	54	46,44	139	119,54	41	35,26	157	135,02	33	28,38	
800	106	91,16	61	52,46	150	129	45	38,7	181	155,66	36	30,96	
900	117	100,62	64	55,04	162	139,32	48	41,28	199	171,14	37	31,82	
1000	129	110,94	66	56,76	169	145,34	51	43,86	212	182,32	42	36,12	
1200	157	135,02	73	62,78	210	180,6	55	47,3	255	219,3	46	39,56	
1400	173	148,78	77	66,22	241	207,26	59	50,74	274	235,64	49	42,14	

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.13. Норма плотности теплового потока трубопроводов при числе часов работы в год более 5000

						Трубо	провод					
	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный
M - 13			Cl	оеднего	довая	темпеј	ратура	тепло	носите	ля		
й дн 1960 а, мг	6	5	5	0	9	0	5	0	1	10	5	0
Условны метр тр проводя	BT/M	ккал/(м* ч)	BT/M	ккал/(м* ч)	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м* ч)	BT/M	ккал/(м* ч)
25	14	12,04	9	7,74	20	17,2	9	7,74	24	20,64	8	6,88

						Трубог	провод	ι				
	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный	Пода	ющий	Обра	тный
M - 18-			C	реднего	довая	темпеј	ратура	тепло	носите	еля		_
й ди 0yбо a, mr	6	5	5	50	9)0	5	50	1	10	5	50
Условны метр тр провод	Вт/м	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	Вт/м	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)
30	15	12,9	10	8,6	20	17,2	10	8,6	26	22,36	9	7,74
40	16	13,76	11	9,46	22	18,92	11	9,46	27	23,22	10	8,6
50	17	14,62	12	10,32	24	20,64	12	10,32	30	25,8	11	9,46
65	20	17,2	13	11,18	29	24,94	13	11,18	34	29,24	12	10,32
80	21	18,06	14	12,04	31	26,66	14	12,04	37	31,82	13	11,18
100	24	20,64	16	13,76	35	30,1	15	12,9	41	35,26	14	12,04
125	26	22,36	18	15,48	38	32,68	16	13,76	43	36,98	15	12,9
150	27	23,22	19	16,34	42	36,12	17	14,62	47	40,42	16	13,76
200	33	28,38	23	19,78	49	42,14	19	16,34	58	49,88	18	15,48
250	38	32,68	26	22,36	54	46,44	21	18,06	66	56,76	20	17,2
300	43	36,98	28	24,08	60	51,6	24	20,64	71	61,06	21	18,06
350	46	39,56	31	26,66	64	55,04	26	22,36	80	68,8	22	18,92
400	50	43	33	28,38	70	60,2	28	24,08	86	73,96	24	20,64
450	54	46,44	36	30,96	79	67,94	31	26,66	91	78,26	25	21,5
500	58	49,88	37	31,82	84	72,24	32	27,52	100	86	27	23,22
600	67	57,62	42	36,12	93	79,98	35	30,1	112	96,32	31	26,66
700	76	65,36	47	40,42	107	92,02	37	31,82	128	110,08	31	26,66
800	85	73,1	51	43,86	119	102,34	38	32,68	139	119,54	34	29,24
900	90	77,4	56	48,16	128	110,08	43	36,98	150	129	37	31,82
1000	100	86	60	51,6	140	120,4	46	39,56	163	140,18	40	34,4
1200	114	98,04	67	57,62	158	135,88	53	45,58	190	163,4	44	37,84
1400	130	111,8	70	60,2	179	153,94	58	49,88	224	192,64	48	41,28

i

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

4_				Сре	дняя	темпе	ратур	ра теп.	понос	ителя,	°C			
lый pyбq , mm	2	20	5	50	1	00	1:	50	2	00	2	50	3	00
Условн проход т провода	BT/M	ККАЛ/(M*ч)	BT/M	Ккал/(м*ч)	BT/M	ККАЛ/(М*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(М*ч)
15	3	2,58	8	6,88	16	13,76	24	20,64	34	29,24	45	38,7	55	47,3
20	4	3,44	9	7,74	18	15,48	28	24,08	38	32,68	49	42,14	61	52,46
25	4	3,44	11	9,46	20	17,2	30	25,8	42	36,12	54	46,44	66	56,76
40	5	4,3	12	10,32	24	20,64	36	30,96	48	41,28	62	53,32	77	66,22
50	6	5,16	14	12,04	25	21,5	38	32,68	52	44,72	66	56,76	83	71,38
65	7	6,02	15	12,9	29	24,94	44	37,84	58	49,88	75	64,5	92	79,12
80	8	6,88	17	14,62	32	27,52	47	40,42	62	53,32	80	68,8	99	85,14
100	9	7,74	19	16,34	35	30,1	52	44,72	69	59,34	88	75,68	109	93,74
125	10	8,6	22	18,92	40	34,4	57	49,02	75	64,5	99	85,14	121	104,06
150	11	9,46	24	20,64	44	37,84	62	53,32	83	71,38	109	93,74	133	114,38
200	15	12,9	30	25,8	53	45,58	75	64,5	99	85,14	129	110,94	157	135,02
250	17	14,62	35	30,1	61	52,46	86	73,96	112	96,32	145	124,7	174	149,64
300	20	17,2	40	34,4	68	58,48	96	82,56	126	108,36	160	137,6	194	166,84
350	23	19,78	45	38,7	75	64,5	106	91,16	138	118,68	177	152,22	211	181,46
400	24	20,64	49	42,14	83	71,38	115	98,9	150	129	191	164,26	228	196,08
450	27	23,22	53	45,58	88	75,68	123	105,78	160	137,6	204	175,44	244	209,84
500	29	24,94	58	49,88	96	82,56	135	116,1	171	147,06	220	189,2	261	224,46
600	34	29,24	66	56,76	110	94,6	152	130,72	194	166,84	248	213,28	294	252,84
700	39	33,54	75	64,5	122	104,92	169	145,34	214	184,04	273	234,78	323	277,78
800	43	36,98	83	71,38	135	116,1	172	147,92	237	203,82	301	258,86	355	305,3
900	48	41,28	92	79,12	149	128,14	205	176,3	258	221,88	328	282,08	386	331,96
1000	53	45,58	101	86,86	163	140,18	223	191,78	280	240,8	355	305,3	418	359,48
Криволиней- ные поверхно- сти более 1022 мм и плоские	5	4,3	28	24,08	44	37,84	57	49,02	69	59,34	85	73,1	97	83,42

Таблица В.14. Нормы плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и числом работы в год более 5000 ч.

Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.15. Норма плотности теплового потока при расположении оборудования и трубопроводов на открытом воздухе и числе часов работы в год 5000 ч и менее

				Сре	дняя	темпе	ратуј	ра тепл	юнос	ителя,	°C			
ный руб а, м	2	20	5	50	1	00	1	50	2	00	2	50	3	00
Услові провода провода	BT/M	ккал/(м* ч)	BT/M	Ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(М*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ККАЛ/(М*ч)
15	4	3,44	9	7,74	18	15,48	28	24,08	38	32,68	48	41,28	61	52,46
20	5	4,3	11	9,46	21	18,06	31	26,66	43	36,98	54	46,44	67	57,62
25	5	4,3	12	10,32	23	19,78	34	29,24	47	40,42	60	51,6	74	63,64
40	7	6,02	15	12,9	27	23,22	40	34,4	54	46,44	71	61,06	86	73,96
50	7	6,02	16	13,76	30	25,8	44	37,84	58	49,88	75	64,5	93	79,98
65	8	6,88	19	16,34	34	29,24	50	43	67	57,62	85	73,1	104	89,44
80	9	7,74	21	18,06	37	31,82	54	46,44	71	61,06	92	79,12	112	96,32
100	11	9,46	23	19,78	41	35,26	60	51,6	80	68,8	101	86,86	123	105,78
125	12	10,32	26	22,36	46	39,56	66	56,76	88	75,68	114	98,04	138	118,68
150	15	12,9	29	24,94	52	44,72	73	62,78	97	83,42	126	108,36	152	130,72
200	18	15,48	36	30,96	63	54,18	89	76,54	117	100,62	151	129,86	181	155,66
250	21	18,06	40	34,4	72	61,92	103	88,58	132	113,52	170	146,2	203	174,58
300	25	21,5	48	41,28	83	71,38	115	98,9	149	128,14	189	162,54	228	196,08
350	29	24,94	54	46,44	92	79,12	127	109,22	164	141,04	209	179,74	250	215
400	31	26,66	60	51,6	100	86	139	119,54	178	153,08	226	194,36	271	233,06
450	34	29,24	66	56,76	108	92,88	149	128,14	191	164,26	244	209,84	290	249,4
500	37	31,82	72	61,92	117	100,62	162	139,32	206	177,16	264	227,04	311	267,46
600	44	37,84	82	70,52	135	116,1	185	159,1	236	202,96	299	257,14	354	304,44
700	49	42,14	94	80,84	151	129,86	205	176,3	262	225,32	331	284,66	390	335,4
800	55	47,3	105	90,3	168	144,48	228	196,08	290	249,4	367	315,62	431	370,66
900	62	53,32	116	99,76	185	159,1	251	215,86	318	273,48	399	343,14	471	405,06
1000	68	58,48	127	109,22	203	174,58	273	234,78	345	296,7	435	374,1	510	438,6

6 Z		Средняя температура теплоносителя, °С												
ный груб а, мл	2	20	5	50	1	00	1	50	2	00	2	50	3	00
Услов проход провод	BT/M	ккал/(м*ч)	BT/M	Ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)
Криволиней- ные поверхно- сти более 1022 мм и плоские	21	18,06	36	30,96	58	49,88	72	61,92	89	76,54	109	93,74	125	107,5

i

Примечание- Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.16. Норма плотности теплового потока при расположении оборудования и трубопроводов в помещении и числе работы в год более 5000 ч

			(Средня	я темп	ератур	а тепл	оносит	селя, ^о	С		
, , , , , , , , , , , , , , , , , , ,	5	50	1	00	1	50	2	00	2	50	3	00
Условный проход труб провода, м	BT/M	KKaJ/(M*4)	B _T /M	ккал/(м* ч)	B _T /M	ккал/(м*ч)	BT/M	KKaJJ((M*4)	B _T /M	ккал/(м*ч)	BT/M	ккал/(м*ч)
15	6	5,16	14	12,04	22	18,92	32	27,52	42	36,12	53	45,58
20	7	6,02	16	13,76	26	22,36	36	30,96	46	39,56	58	49,88
25	8	6,88	19	16,34	28	24,08	39	33,54	51	43,86	63	54,18
40	10	8,6	21	18,06	33	28,38	46	39,56	59	50,74	74	63,64
50	10	8,6	22	18,92	35	30,1	49	42,14	64	55,04	79	67,94
65	12	10,32	26	22,36	40	34,4	55	47,3	72	61,92	90	77,4
80	13	11,18	28	24,08	43	36,98	59	50,74	7	6,02	95	81,7
100	14	12,04	31	26,66	48	41,28	65	55,9	84	72,24	104	89,44
125	17	14,62	35	30,1	53	45,58	72	61,92	94	80,84	116	99,76
150	19	16,34	39	33,54	58	49,88	78	67,08	104	89,44	128	110,08
200	23	19,78	47	40,42	70	60,2	94	80,84	124	106,64	151	129,86
250	27	23,22	54	46,44	80	68,8	106	91,16	139	119,54	169	145,34
300	31	26,66	62	53,32	90	77,4	119	102,34	154	132,44	186	159,96
350	35	30,1	68	58,48	99	85,14	131	112,66	170	146,2	205	176,3

			(Средня	я темп	ератур	а тепл	оносит	'еля, ^о	С		
¥ 0, ¥	5	50	1	00	1:	50	2	00	2	50	3	00
Условный проход тру(провода, м	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*4)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ККАЛ/(M*ч)	BT/M	ккал/(м*ч)
400	38	32,68	74	63,64	108	92,88	142	122,12	184	158,24	221	190,06
450	42	36,12	81	69,66	116	99,76	152	130,72	196	168,56	235	202,1
500	46	39,56	87	74,82	125	107,5	164	141,04	211	181,46	253	217,58
600	54	46,44	100	86	143	122,98	186	159,96	238	204,68	285	245,1
700	59	50,74	111	95,46	159	136,74	205	176,3	262	225,32	313	269,18
800	67	57,62	124	106,64	176	151,36	226	194,36	290	249,4	344	295,84
900	74	63,64	136	116,96	193	165,98	247	212,42	316	271,76	374	321,64
1000	82	70,52	149	128,14	210	180,6	286	245,96	342	294,12	405	348,3
Криволиней- ные поверхно- сти более 1022 мм и плоские	23	19,78	40	34,4	54	46,44	66	56,76	83	71,39	95	81,7

- 1. Примечание: 1. При расположении изолируемых поверхностей в тоннелях к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.17. Норма плотности теплового потока при расположении оборудования и трубопроводов в помещении и тоннеле и числе часов работы в год 5000 ч и менее

			(Средня	я темг	іератур	а тепл	юносит	геля, ^о	С		
<u>ч</u> , т	5	50	1	00	1	50	2	00	2	50	3	00
Условный проход тру(провода, м	BT/M	ккал/(м*ч)	B _T /M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)
15	7	6,02	16	13,76	25	21,5	35	30,1	46	39,56	58	49,88
20	8	6,88	18	15,48	28	24,08	39	33,54	51	43,86	64	55,04
25	9	7,74	20	17,2	31	26,66	43	36,98	56	48,16	70	60,2

			(Средня	я темп	ератур	а тепл	оносит	°еля, °	С		
- 4 z	5	0	1	00	1:	50	2	00	2:	50	3	00
Условный проход труб провода, м	BT/M	ККАЛ/(М*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м*ч)	BT/M	ккал/(м* ч)	BT/M	ккал/(м*ч)
40	10	8,6	23	19,78	37	31,82	51	43,86	66	56,76	82	70,52
50	12	10,32	26	22,36	39	33,54	54	46,44	71	61,06	88	75,68
65	14	12,04	30	25,8	46	39,56	62	53,32	81	69,66	99	85,14
80	16	13,76	33	28,38	50	43	67	57,62	86	73,96	106	91,16
100	18	15,48	36	30,96	55	47,3	74	63,64	95	81,7	117	100,62
125	20	17,2	41	35,26	62	53,32	82	70,52	108	92,88	132	113,52
150	22	18,92	45	38,7	68	58,48	91	78,26	119	102,34	145	124,7
200	29	24,94	56	48,16	82	70,52	110	94,6	143	122,98	173	148,78
250	34	29,24	65	55,9	94	80,84	124	106,64	161	138,46	194	166,84
300	38	32,68	74	63,64	106	91,16	139	119,54	180	154,8	216	185,76
350	42	36,12	82	70,52	118	101,48	154	132,44	198	170,28	239	205,54
400	48	41,28	90	77,4	130	111,8	168	144,48	215	184,9	259	222,74
450	51	43,86	98	84,28	138	118,68	180	154,8	233	200,38	278	239,08
500	57	49,02	106	91,16	150	129	194	166,84	251	215,86	298	256,28
600	65	55,9	122	104,92	172	147,92	222	190,92	286	245,96	338	290,68
700	73	62,78	136	116,96	191	164,26	247	212,42	315	270,9	374	321,64
800	82	70,52	152	130,72	212	182,32	274	235,64	349	300,14	412	354,32
900	91	78,26	167	143,62	234	201,24	300	258	382	328,52	450	387
1000	100	86	183	157,38	254	218,44	326	280,36	415	356,9	489	420,54
Криволиней- ные поверхно- сти более 1022 мм и плоские	29	24,96	50	43	68	58,48	84	72,24	106	91,16	121	104,06

i

- При расположении изолируемых поверхностей в тоннелях к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

В.4. 2003 года- СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов

Таблица В.18. Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы более 5000

6 4]	Гемпер	ратура	тепло	носит	'еля, °С	2			
ный pyб a, мл	20	50	100	150	200	250	300	350	400	450	500	550	600
Услові проход т провода				Пл	ютнос	ть теп	лового) ПОТО	ка, Вт	/м2			
15	4	9	17	25	35	45	56	68	81	94	109	124	140
20	4	10	19	28	39	50	62	75	89	103	119	135	152
25	5	11	20	31	42	54	67	81	95	111	128	145	163
40	5	12	23	35	47	60	75	90	106	123	142	161	181
50	5	14	26	38	51	66	81	98	115	133	153	173	195
65	7	16	29	43	58	74	90	108	127	147	169	191	214
80	8	17	31	46	62	78	96	115	135	156	179	202	226
100	9	19	34	50	67	85	104	124	146	168	192	217	243
125	10	21	38	55	74	93	114	136	159	183	208	235	263
150	11	23	42	61	80	101	132	156	182	209	238	267	298
200	14	28	50	72	95	119	154	182	212	242	274	308	343
250	16	33	57	82	107	133	173	204	236	270	305	342	380
300	18	39	67	95	124	153	191	224	259	296	333	373	414
350	22	45	77	108	140	173	208	244	281	320	361	403	446
400	25	49	84	117	152	187	223	262	301	343	385	430	476
450	27	54	91	127	163	200	239	280	322	365	410	457	505
500	30	58	98	136	175	215	256	299	343	389	436	486	537
600	34	67	112	154	197	241	286	333	382	432	484	537	593
700	38	75	124	170	217	264	313	364	416	470	526	583	642
800	43	83	137	188	238	290	343	397	453	511	571	633	696
900	47	91	150	205	259	315	372	430	490	552	616	681	749
1000	52	100	163	222	281	340	400	463	527	592	660	729	801
1400	70	133	215	291	364	439	514	591	670	750	833	918	1098
Более 1400				П	лотнос	ть теп	ловогс	поток	а, Вт/м	л2			
и плос- кие по- верхности	15	27	41	54	66	77	89	100	110	134	153	174	192

(i) Примечание

1. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.19. Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы 5000 и менее

6 4]	Гемпеј	ратура	тепло	носит	еля, °(С			
НЫЙ Труб а, мл	20	50	100	150	200	250	300	350	400	450	500	550	600
Услові проход 1 проводз				Пл	ютнос	ть теп	лового) пото	ка, Вт	/м2			
15	4	10	18	28	38	49	61	74	87	102	117	133	150
20	5	11	21	31	42	54	67	81	96	112	128	146	164
25	5	12	23	34	46	59	73	88	104	120	138	157	176
40	6	14	26	39	52	67	82	99	116	135	154	174	196
50	7	16	29	43	57	73	90	107	126	146	167	189	212
65	8	18	33	48	65	82	100	120	141	162	185	209	234
80	9	20	36	52	69	88	107	128	150	172	197	222	248
100	10	22	39	57	76	96	116	139	162	187	212	239	267
125	12	25	44	63	84	113	137	162	189	216	245	276	307
150	13	27	48	70	92	123	149	176	205	235	266	298	332
200	16	34	59	83	109	146	176	207	240	274	310	347	385
250	19	39	67	95	124	166	199	234	270	307	346	387	429
300	22	44	76	106	138	184	220	258	297	338	380	424	469
350	27	54	92	128	164	202	241	282	324	368	413	460	508
400	30	60	100	139	178	219	260	304	349	395	443	493	544
450	33	65	109	150	192	235	280	326	373	422	473	526	580
500	36	71	118	162	207	253	300	349	399	451	505	561	618
600	42	82	135	185	235	285	338	391	447	504	563	624	686
700	47	91	150	204	259	314	371	429	489	551	614	679	746
800	53	102	166	226	286	346	407	470	535	602	670	740	812
900	59	112	183	248	312	377	443	511	581	652	725	800	877
1000	64	123	199	269	339	408	479	552	626	702	780	860	941
1400	87	165	264	355	444	532	621	712	804	898	995	1092	1193
Более 1400				П	лотнос	сть теп	лового	поток	a, Bt/M	м2			,
и плос- кие по- верхности	19	35	54	70	85	99	112	125	141	158	174	191	205

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.20. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

	температура теплоносителя, °С											
ный pyб a, м	50	100	150	200	250	300	350	400	450	500	550	600
Услові проход т проводз				Плот	зого по	тока, I	Вт/м2					
15	6	14	23	33	43	54	66	79	93	107	122	138
20	7	16	26	37	48	60	73	87	102	117	134	151
25	8	18	28	40	52	65	79	94	110	126	144	162
40	9	21	32	45	59	73	89	105	122	141	160	180
50	10	23	36	50	64	80	96	114	133	152	173	194
65	12	26	41	56	72	89	107	127	147	169	191	214
80	13	28	44	60	77	95	114	135	156	179	202	227
100	14	31	48	65	84	103	124	146	169	193	218	244
125	16	35	53	72	92	113	136	159	184	210	237	265
150	18	38	58	79	100	123	147	172	199	226	255	285
200	22	46	70	93	118	144	172	200	230	262	294	328
250	26	53	79	106	134	162	193	224	257	291	327	364
300	29	60	88	118	148	179	212	246	281	318	357	396
350	33	66	97	129	161	195	230	267	305	344	385	428
400	36	72	106	139	174	210	247	286	326	368	411	456
450	39	76	114	150	187	225	264	305	348	392	437	484
500	43	84	123	161	200	241	282	326	370	417	465	514
600	49	96	139	181	225	269	315	363	412	462	515	569
700	55	107	153	200	247	295	344	395	448	502	558	616
800	61	118	169	220	270	322	376	431	487	546	606	668
900	67	130	185	239	294	350	407	466	527	589	653	718
1000	74	141	201	259	318	377	438	501	565	631	699	768
1400	99	187	263	337	411	485	561	638	716	797	880	964
Более 1400				Пло	тность	теплов	вого по	гока, В	т/м2			,
и плоские поверхности	23	41	56	69	82	94	106	118	130	141	153	165

(i) Примечание

Примечание- Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.21. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы 5000 и менее

	Температура теплоносителя, °С											
ный груб а, мі	50	100	150	200	250	300	350	400	450	500	550	600
Услові проход т провода		Плотность теплового потока, Вт/м2										
15	6	16	25	35	46	58	71	85	99	114	130	147
20	7	18	28	40	52	65	79	93	109	126	143	161
25	8	20	31	43	56	70	85	101	118	136	154	174
40	10	23	36	49	64	80	96	114	132	152	172	194
50	11	25	40	54	70	87	105	124	144	165	187	210
65	13	29	45	62	79	98	118	139	161	184	208	233
80	14	32	49	66	85	105	126	148	171	195	221	247
100	16	35	54	73	93	115	137	161	186	212	239	267
125	18	39	60	81	103	126	151	176	203	231	261	291
150	21	44	66	89	113	138	164	192	221	251	282	315
200	26	53	80	107	134	163	194	225	258	292	328	365
250	30	62	92	122	153	185	218	253	290	327	366	407
300	34	70	103	136	170	205	241	279	319	359	402	446
350	38	77	113	149	186	224	263	304	347	391	436	483
400	42	85	123	162	201	242	284	328	373	419	467	517
450	46	92	134	175	217	260	305	351	398	448	498	551
500	51	100	144	189	233	279	327	375	426	478	532	587
600	58	114	164	214	263	314	367	420	476	533	592	652
700	65	127	182	236	290	345	402	460	520	582	645	710
800	73	141	202	261	320	379	441	504	568	635	703	772
900	81	156	221	285	349	413	479	547	616	687	760	834
1000	89	170	241	309	378	447	518	590	663	739	816	896
1400	120	226	318	406	492	580	668	758	850	943	1038	1136
Более 1400				Пло	тность	теплов	ого по	гока, В	т/м2			
и плоские поверхности	26	48	63	78	92	105	119	132	145	158	171	190

(i) Примечание

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.22. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год более 5000 ч

Условный проход трубопровода, мм	Среднегодовая температура тепло- носителя (подающий/обратный), °С								
	65/50	90/50	110/50						
	Суммарная лине	йная плотность теплон	вого потока, Вт/м						
25	19	24	28						
32	21	26	30						
40	22	28	32						
50	25	30	35						
65	29	35	40						
80	31	37	43						
100	34	40	46						
125	39	46	52						
150	42	50	57						
200	52	61	70						
250	60	71	80						
300	67	79	90						
350	75	88	99						
400	81	96	108						
450	89	104	117						
500	96	113	127						
600	111	129	145						
700	123	144	160						
800	137	160	177						
900	151	176	197						
1000	166	192	212						
1200	195	225	250						
1400	221	256	283						

Примечание

1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;

2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.23. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год 5000 ч и менее

Условный проход трубопровода, мм	Среднегодовая температура тепло- носителя (подающий/обратный), °С								
	65/50	90/50	110/50						
	Суммарная лине	иная плотность теплов	вого потока, Вт/м						
25	21	26	31						
32	24	29	33						
40	25	31	35						
50	29	34	39						
65	32	39	45						
80	35	42	48						
100	39	47	53						
125	44	53	60						
150	49	59	66						
200	60	71	81						
250	71	83	94						
300	81	94	105						
350	89	105	118						
400	98	115	128						
450	107	125	140						
500	118	137	152						
600	134	156	174						
700	151	175	194						
800	168	195	216						
900	186	216	239						
1000	203	234	261						
1200	239	277	305						
1400	273	316	349						

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.24. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной бесканальной прокладке и продолжительности работы в год более 5000 ч

Условный проход трубопровода, мм	Среднегодовая температура тепло- носителя (подающий/обратный), °С								
	65/50	90/50	110/50						
	Суммарная лине	йная плотность теплов	вого потока, Вт/м						
25	27	32	36						
32	29	35	39						
40	31	37	42						
50	35	41	47						
65	41	49	54						
80	45	52	59						
100	49	58	66						
125	56	66	73						
150	63	73	82						
200	77	93	100						
250	92	106	117						
300	105	121	133						
350	118	135	148						
400	130	148	163						
450	142	162	177						
500	156	176	194						
600	179	205	223						
700	201	229	249						
800	226	257	279						
900	250	284	308						
1000	275	312	338						
1200	326	368	398						
1400	376	425	461						

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.25. Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземном бесканальной прокладке и продолжительности работы в год 5000 ч и менее

Условный проход трубопровода, мм	Среднегодовая температура тепло- носителя (подающий/обратный), °С								
	65/50	90/50	110/50						
	Суммарная лине	йная плотность теплов	вого потока, Вт/м						
25	30	35	40						
32	32	38	43						
40	35	41	47						
50	40	47	53						
65	46	55	60						
80	51	60	66						
100	57	67	74						
125	65	76	84						
150	74	86	94						
200	93	107	117						
250	110	125	138						
300	126	144	157						
350	140	162	177						
400	156	177	194						
450	172	196	213						
500	189	214	232						
600	219	249	269						
700	247	290	302						
800	278	312	341						
900	310	349	380						
1000	341	391	414						
1200	401	454	481						
1400	467	523	567						

- 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95-70, 150-70 и 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

В.5. КТМ 204 Украины 244-94

НОРМЫ ПЛОТНОСТИ ТЕПЛОВОГО ПОТОКА ЧЕРЕЗ ПОВЕРХНОСТЬ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ С ПОЛОЖИТЕЛЬНЫМИ ТЕМПЕРАТУРАМИ

Таблица В.26. Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

<u>-</u>		(Средняя т	емператур	ра теплоно	осителя, ^о	С	
ный руб ۱, мл	20	50	100	150	200	250	300	350
Условн проход т провода		Нормы	і линейно	й плотнос	ти теплое	ого поток	са, Вт/м	1
15	4	10	20	30	42	55	68	83
20	5	11	22	34	47	60	75	91
25	5	13	25	37	52	66	82	99
40	7	15	29	44	59	77	95	115
50	7	17	31	47	64	82	102	123
65	9	19	36	54	72	93	114	137
80	10	21	39	58	77	99	122	147
100	11	24	43	64	85	109	134	160
125	12	27	49	70	93	122	149	178
150	14	30	54	77	102	134	164	194
200	18	37	65	93	122	159	194	228
250	21	43	75	106	138	179	215	254
300	25	49	84	118	155	198	239	280
350	28	55	93	131	170	218	261	306
400	30	61	102	142	185	236	282	330
450	33	65	109	152	197	252	301	351
500	36	71	119	166	211	271	322	376
600	42	82	136	188	240	306	363	422
700	48	92	151	209	264	337	399	463
800	53	103	167	213	292	371	438	507
900	59	113	184	253	319	405	477	551
1000	65	124	201	275	346	438	516	595
e 02		Нормы п	оверхност	ной плотн	ости тепло	вого пото	ка, Вт/м2	
Криволиней ные поверх ности диаме ром более 10 мм и плоски	19	35	54	70	85	105	120	135

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.27. Нормы плотности теплового потока при расположении на открытом воздухе и продолжительности часов работы в год 5000 та менее

-0 5		(Средняя то	емператуј	ра теплон	осителя, °	С				
ный руб ۱, мл	20	50	100	150	200	250	300	350			
Условн проход т провода	Нормы линейной плотности теплового потока, Вт/м										
15	5	11	22	34	46	59	74	90			
20	6	13	25	38	52	66	82	99			
25	6	15	28	42	57	73	90	108			
40	8	18	33	49	66	86	105	126			
50	9	19	36	53	71	91	113	135			
65	10	23	41	61	81	104	127	152			
80	11	25	45	66	87	112	137	163			
100	13	28	50	73	97	123	150	178			
125	15	32	56	81	107	139	168	200			
150	18	35	63	89	118	153	185	219			
200	22	44	77	109	142	184	221	262			
250	26	51	88	125	161	207	248	293			
300	30	59	101	140	181	231	278	324			
350	35	66	112	155	200	255	305	355			
400	38	73	122	170	217	276	331	386			
450	41	80	132	182	233	298	353	412			
500	45	88	143	197	251	322	379	442			
600	53	100	165	225	288	365	432	499			
700	60	114	184	250	319	404	475	550			
800	67	128	205	278	353	448	526	605			
900	75	141	226	306	388	487	574	660			
1000	83	155	247	333	421	531	822	715			
e 020		Нормы п	оверхност	ной плотн	ости тепло	ового пото	ка, Вт/м2				
Криволиней ные поверх- ности диаме ром более 107 мм и плоски	20	44	71	88	108	133	152	165			

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.28. Нормы плотности теплового потока при расположении в помещении и тоннеле и продолжительности часов работы в год более 5000

9 Z	Средняя температура теплоносителя, °С								
ный руб ۱, мл	50	100	150	200	250	300	350		
Условн проход т провода		Нормы ли	нейной пл	отности те	еплового по	тока, Вт/м			
15	8	18	28	40	53	66	81		
20	9	20	32	45	58	73	89		
25	10	22	35	49	64	79	97		
40	12	26	41	57	74	93	112		
50	13	28	44	61	80	99	120		
65	15	32	50	69	90	112	134		
80	16	35	54	74	97	119	143		
100	18	39	60	81	105	130	156		
125	21	44	66	91	118	145	175		
150	24	49	73	98	130	160	190		
200	29	59	80	118	155	189	225		
250	34	68	100	133	174	211	249		
300	39	77	112	149	193	233	275		
350	44	85	124	164	212	256	301		
400	48	93	135	178	230	276	324		
500	57	109	156	205	264	316	370		
600	67	125	179	232	298	356	415		
700	74	139	199	256	328	391	456		
800	84	155	220	283	362	430	499		
900	93	170	241	309	395	468	543		
1000	102	186	262	335	428	506	586		
e 0 1 - L	Ι	Нормы пове	рхностной	плотности	теплового п	отока, Вт/м	2		
Криволиней ные поверх ности диаме ром более 10 мм и плоски	29	50	68	83	104	119	134		

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.29. Нормы плотности теплового потока при расположении в помещении и тоннеле и продолжительности часов работы в год 5000 и менее

0 M		Сре	цняя темпе	ратура тег	ілоносителя	я, °С					
HЫЙ Pyб I, MI	50	100	150	200	250	300	350				
Услови проход т провода		Нормы линейной плотности теплового потока, Вт/м									
15	9	20	31	44	57	72	87				
20	10	22	35	49	64	80	97				
25	11	25	39	54	70	87	106				
40	13	29	46	64	83	103	124				
50	15	32	49	68	89	110	132				
65	17	37	57	78	101	124	149				
80	20	41	62	84	108	133	160				
100	22	45	69	93	119	146	175				
125	25	51	77	102	135	165	196				
150	28	56	85	114	149	181	215				
200	36	70	103	137	179	216	256				
250	42	81	118	155	201	242	287				
300	48	92	133	174	225	271	319				
350	53	103	147	193	248	299	350				
400	60	113	162	210	269	324	379				
500	71	132	183	243	314	373	435				
600	81	152	215	277	357	423	492				
700	91	170	239	309	394	467	541				
800	102	190	265	342	436	515	596				
900	114	209	292	375	478	563	650				
1000	125	229	318	408	519	611	704				
í- - - 20 Ie	I	Нормы пове	рхностной	плотности	теплового п	отока, Вт/м	2				
Криволиней ные поверх ности диаме ром более 10 мм и плоски	36	63	85	105	132	151	170				

- 1. При расположении изолируемых поверхностей в тоннеле к нормам плотности следует вводить коэффициент 0,85;
- 2. Промежуточные значения нормам плотности теплового потока следует определять интерполяцией.

Таблица В.30. Нормы плотности теплового потока через поверхность изоляции паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах, Вт/м

Условный	проход трусо- проводов, мм	Паропровод	Конденсатопровод										
				P	асчетн	ая тем	перату	ра теп	лоноси	теля, '	°C		1
		115	100	150	100	200	100	250	100	300	100	350	100
25	25	28	22	36	22	49	22	61	22	77	22	85	22
30	25	29	22	38	22	52	22	65	22	83	22	100	22
40	25	31	22	40	22	54	22	70	22	88	22	105	22
50	25	34	22	43	22	62	22	77	22	95	22	113	22
65	30	38	25	51	25	70	25	85	25	105	25	124	24
80	40	44	27	55	27	74	26	90	26	110	26	130	25
100	40	47	27	59	27	79	26	97	26	118	26	140	25
125	50	52	29	64	29	86	28	105	28	128	28	151	28
150	70	56	33	69	32	93	31	113	31	138	31	170	31
200	80	65	35	81	35	107	34	130	34	157	34	184	34
250	100	73	38	90	38	119	37	143	37	176	37	206	37
300	125	80	41	100	40	132	40	159	40	191	40	223	40
350	150	88	46	108	45	142	45	171	44	205	44	240	44
400	180	94	51	115	50	152	50	183	49	219	49	255	49
450	200	101	54	124	53	161	53	194	53	232	52	269	52
500	250	108	61	132	60	171	59	207	59	248	59	287	58

Примечание

Промежуточные значения норм теплового потока следует определять интерполяцией.

Таблица В.31. Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных тепловых сетей при

9 Z	Трубопровод										
овный д труб ода, мі	Подающий	Обратный	Подаю- щикй	Обратный	Подающий	Обратный					
V CJI 0 X O POB		Среднегод	овая темпера	тура теплоно	ура теплоносителя, ° С						
	65	50	90	50	110	50					
25	18	12	26	11	31	10					
30	19	13	27	12	33	11					
40	21	14	29	13	36	12					
50	22	15	33	14	40	13					
65	27	19	38	16	47	14					
80	29	20	41	17	51	15					
100	33	22	46	19	57	17					
125	34	23	49	20	61	18					
150	38	26	54	22	65	19					
200	48	31	66	26	83	23					
250	54	35	76	29	93	25					
300	62	40	87	32	103	28					
350	68	44	93	34	117	29					
400	76	47	109	37	123	30					
450	77	49	112	39	135	32					
500	88	54	126	43	167	33					
600	98	58	140	45	171	35					
700	107	63	163	47	185	38					
800	130	72	181	48	213	42					
900	138	75	190	57	234	44					
1000	152	78	199	59	249	49					
1200	185	86	257	66	300	54					
1400	204	90	284	69	322	58					

прокладке в непроходных каналах при продолжительности часов работы в год 5000 и менее, Вт/м

Примечание

- Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.32. Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных тепловых сетей при

	Трубопровод						
HLIЙ Py6 I, MI	Подающий	Обратный	Подающий	Обратный	Подающий	Обратный	
10ВI ОД Т ВОД\$	Среднегодовая температура теплоносителя, ° С						
yc. poxe	65	50	90	50	110	50	
25	16	11	23	10	28	9	
30	17	12	24	11	30	10	
40	18	13	26	12	32	11	
50	20	14	28	13	35	12	
65	23	16	34	15	40	13	
80	25	17	36	16	44	14	
100	28	19	41	17	48	15	
125	31	21	42	18	50	16	
150	32	22	44	19	55	17	
200	39	27	54	22	68	21	
250	45	30	64	25	77	23	
300	50	33	70	28	84	25	
350	55	37	75	30	94	26	
400	58	38	82	33	101	28	
450	67	43	93	36	107	29	
500	68	44	98	38	117	32	
600	79	50	109	41	132	34	
700	89	55	126	43	151	37	
800	100	60	140	45	163	40	
900	106	66	151	54	186	43	
1000	117	71	158	57	192	47	
1200	144	79	185	64	229	52	
1400	152	82	210	68	252	56	

прокладке в непроходных каналах при продолжительности часов работы в год более 5000, Вт/м

Примечание

- Расчетные среднегодовые температуры воды в водяных тепловых сетях 65; 90; 110 °C соответствуют температурным графикам 95-70 C; 150-70; 180-70 °C;
- 2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица В.33. Нормы плотности теплового потока через поверхность изоляции трубопроводов при двухтрубной подземной безканальной

Условный	Трубопровод					
проход трубо-	Подающий	Обратный	Подающикй	Обратный		
провода, мм	Среднегодовая температура теплоносителя, ° С					
	65	50	90	50		
25	36	27	48	26		
50	44	34	60	32		
65	50	38	67	36		
80	51	39	69	37		
100	55	42	74	40		
125	61	46	81	44		
150	69	52	91	49		
200	77	59	101	54		
250	83	63	111	59		
300	91	69	122	64		
350	101	75	133	69		
400	108	80	140	73		
450	116	86	151	78		
500	123	91	163	83		
600	140	103	186	94		
700	156	112	203	100		
800	169	112	226	109		

прокладке водяных тепловых сетей при продолжительности часов работы в год 5000 и менее, Вт/м

Примечание

- 1. Промежуточные значения норм плотности теплового потока необходимо определять интерполяцией;
- 2. Расчетные среднегодовые температуры воды в водяных сетях 65, 90 ° С соответствуют температурным графикам 95-70, 150-70 ° С;
- 3. При применении в качестве теплоизоляционного покрытия пенополиуретана, фенольного поропласта ФЛ, полимербетона значение норм плотности необходимо определять с учетом коэффициента К2, указанного в табл. Д.2.10 этого приложения..

Таблица В.34. Нормы плотности теплового потока через поверхность изоляции трубопроводов при двухтрубной подземной безканальной

Условный	Трубопровод					
проход трубо-	Подающий	Обратный	Подающий	Обратный		
провода, мм	Среднегодовая температура теплоносителя, ° С					
-	65	50	90	50		
25	33	25	44	24		
50	40	31	54	29		
65	45	34	60	33		
80	46	35	61	34		
100	49	38	65	35		
125	53	41	72	39		
150	60	46	80	43		
200	66	50	89	48		
250	72	55	96	51		
300	79	59	105	56		
350	86	65	113	60		
400	91	68	121	63		
450	97	72	129	67		
500	105	78	138	72		
600	117	87	156	80		
700	126	93	170	86		
800	140	102	186	93		

прокладке водяных тепловых сетей при продолжительности часов работы в год более 5000, Вт/м

i

Примечание

1. Промежуточные значения норм плотности теплового потока необходимо

- определять интерполяцией;
- 2. Расчетные среднегодовые температуры воды в водяных сетях 65, 90 ° С соответствуют температурным графикам 95-70, 150-70 ° С;
- 3. При применении в качестве теплоизоляционного покрытия пенополиуретана, фенольного поропласта ФЛ, полимербетона значение норм плотности необходимо определять с учетом коэффициента К2 <u>Таблица В.35</u>, <u>«Коэффициент К2</u>, учитывающий изменение норм плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ».

Таблица В.35. Коэффициент К2, учитывающий изменение норм плотности теплового потока при применении теплоизоляционного слоя из пенополиуретана, полимербетона, фенольного поропласта ФЛ

Материал тепло-	Условный проход трубопровода, мм				
изоляционного слоя	25-65	89-150	200-300	350-500	
		Коэффи	циент К2		
пенополиуретан, фе- нольный поропласт	0,5	0,6	0,7	0,8	
полимербетон	0,7	0,8	0,9	1	

Примечание к таблицам.

Уточненные расчеты потерь теплоты в тепловых сетях рекомендуется выполнять по

_{формуле:}
$$Q = q_n \cdot l \cdot \beta \cdot 10^{-6} \cdot \tau \cdot 3,6$$

Где *Q*- потери теплоты, ГДж в год;

*q*_{*n*-норма тепловых потерь, Вт/м;}

l-протяженность трубопроводов, м;

β- коэффициент, который учитывает потерю теплоты опорами, арматурой и компенсаторами, и принимается при безканальной прокладке- 1,15; в туннелях и каналах- 1,2; при надземной прокладке- 1,25.

Приложение С. Технические характеристики стальных трубопроводов для тепловой сети

N п.п	Диа	Толщина стен-		
	условный	наружный	внутренний	ки трубы, мм
1	15	18	14	2,0
2	20	25	21	2,0
3	25	32	27	2,5
4	32	38	33	2,5
5	40	45	40	2,5
6	50	57	50	3,5
7	70	76	69	3,5
8	80	89	82	3,5
9	100	108	100	4,0
10	125	133	125	4,0
11	150	159	150	4,5
12	175	194	184	5,0
13	200	219	207	6,0
14	250	273	259	7,0
15	300	325	309	8,0
16	350	377	359	9,0
17	350	377	357	10,0
18	400	426	414	6,0
19	400	426	408	9,9
20	450	480	468	6,0
21	450	480	466	8,0
22	500	529	517	6,0
23	500	529	515	7,0
24	600	630	616	7,0
25	600	630	614	8,0
26	700	720	706	7,0
27	700	720	704	8,0
28	700	720	702	9,0
29	800	820	804	8,0
30	900	920	902	9,0

Таблица С.1. Технические характеристики стальных трубопроводов

Технические характеристики стальных трубопроводов для тепловой сети

N п.п	Диа	Толщина стен-		
	условный	наружный	внутренний	ки трубы, мм
31	1000	1020	1000	10,0
32	1200	1220	1198	11,0
33	1200	1220	1192	14,0
34	1400	1420	1398	11,0
35	1400	1420	1392	14,0

Условный проход труб D_y независимо от расчетного расхода теплоносителя должен приниматься в тепловых сетях не менее 32 мм.

Приложение D. Основные типы сборных железобетонных каналов для тепловой сети

N п.п.	Условный диаметр	Марка канала	Размерь внутрен	і канала іние, мм	Размер ла наруж	ы кана- кные, мм
	труб, мм		ширина	высота	ширина	высота
1	25-50	КЛ 60-30	600	300	850	440
2	70-80	КЛ 60-45	600	450	850	600
3	100-150	КЛ 90-45	900	450	1150	630
4	100-150	КЛ 60-60	600	600	850	750
5	175-200	КЛ 90-60	900	600	1150	780
6	200-300	КЛ 120-60	1200	600	1450	780
7	350-400	КЛ 150-60	1500	600	1800	850
8	350-400	КЛ 210-60	2100	600	2400	890
9	450-500	КЛс 90-90	900	900	1060	1070
10	450-500	КЛс 120-90	1200	900	1400	1070
11	450-500	КЛс 150-90	1500	900	1740	1070
12	600	KC 120-120	1200	1200	1400	1370
13	700	KC 210-120	2100	1200	2380	1470
14	800	KC 300-150	3000	1500	3610	1950
15	900	KC 360-180	3600	1800	4300	2280
16	1000	КС 420-210	4200	2100	4940	2640
17	600-700	КЛс 120-120	1200	1200	1400	1370
18	600-700	КЛс 150-120	1500	1200	1740	1470
19	600-700	КЛс 210-120	2100	1200	2380	1470
20	450-800	КС 90-90	900	900	1380	1090
21	450-800	КС 120-90	1200	900	1680	1090
22	450-800	КС 90-120	900	1200	1380	1390
23	450-800	КС 150-90	1500	900	1980	1110
24	450-800	KC 210-90	2100	900	2580	1180
25	50-70	КНЖМ-І	750	410	890	570
26	80-150	КНЖМ-II	1000	510	1140	690
27	200-250	КНЖМ-III	1250	650	1390	830
28	300-350	КНЖМ-IV	1500	810	1640	990
29	400	КНЖМ-V	1600	910	1740	1090

Таблица D.1. Основные типы сборных железобетонных каналов

Основные типы сборных железобетонных ка-

N п.п.	Условный диаметр	Марка канала	Размерь внутрен	і канала іние, мм	Размер ла наруж	ы кана- кные, мм
	труб, мм		ширина	высота	ширина	высота
30	450-500	КНЖМ-VI	2100	1100	2260	1330
31	600	КНЖМ-VII	2800	1250	3080	1570

Приложение Е. Коэффициенты местных сопротивлений на участке трубопровода

N п.п.	Местное сопротивление	Коэффициент мест- ного сопротивления
1	Задвижка	0.5
2	Вентиль с косым шпинделем	0.5
3	Вентиль с вертикальным шпинделем	6.0
4	Обратный клапан нормальный	7.0
5	Обратный клапан «захлопка»	3.0
6	Кран проходной	2
7	Компенсатор одно- линзовый без рубашки	1.6- 0.5
8	Компенсатор одно- линзовый с рубашкой	0.1
9	Компенсатор сальниковый	0.3
10	Компенсатор П-образный	2.8
11	Отводы, гнутые под углом 90°	-
12	со складками R=3d	0.8
13	со складками R=4d	0.5
14	гладкие R=1d	1.0
15	гладкие R=3d	0.5
16	гладкие R=4d	0.3
17	Отводы сварные одношовные под	-
18	углом 30°	0.2
19	углом 45°	0.3
20	углом 60°	0.7
21	Отводы сварные двухшовные	-
22	под углом 90°	0.6
23	то же, трехшовные	0.5
24	Тройник при слиянии потока:	-
25	проход	1.2
26	ответвление	1.8
27	Тройник при разветвлении потока:	-
28	проход	1.0
29	ответвление	1.5

Таблица Е.1. Коэффициенты местных сопротивлений

Коэффициенты местных сопротивлений на участке трубопровода

N п.п.	Местное сопротивление	Коэффициент мест- ного сопротивления
30	Тройник при встречном потоке	3.0
31	Внезапное расширение	1.0
32	Внезапное сужение	0.5
33	Грязевик	10

Приложение F. Коэффициенты теплопроводности изоляции

Таблица F.1. Теплоизоляционные материалы

N п.п.	Теплоизоляци-	Коэффициент теплопроводности
	онный материал	$\lambda_{\rm rp} = \lambda + k * t_{\rm T}; BT/(M * C^{\circ})$
		a
1	Асбестовый матрац, за- полненный совелитом	0,087+0,00012* tr
2	Асбестовый мат- рац, заполненный стекловолокном	0,058+0,00023* tr
3	Асботкань в несколько слоев	0,13+0,00026* tr
4	Асбестовый шнур	0,12+0,00031* tr
5	Асбестовый шнур (ШАОН)	0,13+0,00026* tr
6	Асбопухшнур (ШАП)	0,093+0,0002* tr
7	Асбовермикулито- вые изделия марки 250	0,081+0,00023* tr
8	Асбовермикулито- вые изделия марки 300	0,087+0,00023* tr
9	Битумоперлит	0,12+0,00023* tr
10	Битумокерамзит	0,13+0,00023* tr
11	Битумовермикулит	0,13+0,00023* tr
12	Вулканитовые плиты марки 300	0,074+0,00015* tr
13	Диатомовые из- делия марки 500	0,116+0,00023* tr
14	Диатомовые из- делия марки 600	0,14+0,00023* tr
15	Известково-кремнеземи- стые изделия марки 200	0,069+0,00015* tr
16	Маты минераловатные прошивные марки 100	0,045+0,0002* tr
17	Маты минераловатные прошивные марки 125	0,049+0,0002* tr
18	Маты и плиты из мине- ральной ваты марки 75	0,043+0,00022* tr

N п.п.	Теплоизоляци- онный материал	Коэффициент теплопроводности $\lambda_{rp} = \lambda + k * t_{r}; Br/(M * C^{\circ})$
19	Маты и полосы из непре- рывного стекловолокна	0,04+0,00026* tr
20	Маты и плиты стек- ловатные марки 50	0,042+0,00028* tr
21	Пенобетонные изделия	0,11+0,0003* tr
22	Пенопласт ФРП-1 и резопен группы 100	0,043+0,00019* tr
23	Пенополимербетон	0,07
24	Пенополиуретан	0,05
25	Перлитоцементные изделия марки 300	0,076+0,000185* tr
26	Перлитоцементные изделия марки 350	0,081+0,000185* tr
27	Плиты минераловатные полужесткие марки 100	0,044+0,00021* tr
28	Плиты минераловатные полужесткие марки 125	0,047+0,000185* tr
29	Плиты и цилиндры ми- нераловатные марки 250	0,056+0,000185* tr
30	Плиты стекловатные полужесткие марки 75	0,044+0,00023* tr
31	Полуцилиндры и ци- линдры минерало- ватные марки 150	0,049+0,0002* tr
32	Полуцилиндры и ци- линдры минерало- ватные марки 200	0,052+0,000185* tr
33	Совелитовые из- делия марки 350	0,076+0,000185* tr
34	Совелитовые из- делия марки 400	0,078+0,000185* tr
35	Скорлупы минераловат- ные оштукатуренные	0,069+0,00019* tr
36	Фенольный поро- пласт ФЛ монолит	0,05
37	Шнур минерало- ватный марки 200	0,056+0,000185* tr
38	Шнур минерало- ватный марки 250	0,058+0,000185* tr

N п.п.	Теплоизоляци- онный материал	Коэффициент теплопроводности $\lambda_{ m rp} = \lambda + k * t_{ m T}; { m BT}/({ m M} * { m C}^{\circ})$
39	Шнур минерало- ватный марки 300	0,061+0,000185* tr

 ${}^{a}t_{r}$ - средняя температура теплоизоляционного слоя, °C

$$t_{\rm T.} = \frac{(t+40)}{2}$$
, где t- температура теплоносителя

Таблица F.2. Значения поправок K_{λ} к коэффициентам теплопроводности теплоизоляционных материалов в зависимости от технического состояния.

Ν п.п.	Техническое состояние теп- лоизоляцион- ной конструк- ции, условия эксплуатации	K _λ
1	Незначительное разрушение по- кровного и ос- новного слоев изоляционной конструкции	1,4
2	Уплотнение изо- ляции сверху тру- бопровода и об- висание снизу	1,7
3	Частичное разру- шение теплоизо- ляционной кон- струкции, уплот- нение основно- го слоя изоля- ции на 30-50%	1,9
4	Уплотнение ос- новного слоя изо- ляции на 70%	3,5
5	Периодическое затопление ка- нала грунтовы- ми водами или смежными ком- муникациями	4,0

Коэффициенты теплопроводности изоляции

N п.п.	Техническое состояние теп- лоизоляцион- ной конструк- ции, условия эксплуатации	K _λ
6	Незначительное увлажнение изо- ляции 10-15%	1,5
7	Увлажнение изо- ляции 20-30%	2,25
8	Сильное увлаж- нение изоля- ции 40-60%	3,75

Таблица F.3. Коэффициент теплопроводности грунтов в зависимости от степени увлажнения

N п.п. Вид грунта Коэффи сти гру		ициент теплопроводно- д гр _{вт/(м*°С)}		
		сухого	влажного	водонасы- щенного
1	Песок, супесь	1,10	1,92	2,44
2	Глина, суглинок	1,74	2,56	2,67
3	Гравий, щебень	2,03	2,73	3,37